
Network Working Group R. Housley
Request for Comments: 4108 Vigil Security
Category: Standards Track August 2005

 Using Cryptographic Message Syntax (CMS) to Protect Firmware Packages

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2005).

Abstract

 This document describes the use of the Cryptographic Message Syntax
 (CMS) to protect firmware packages, which provide object code for one
 or more hardware module components. CMS is specified in RFC 3852. A
 digital signature is used to protect the firmware package from
 undetected modification and to provide data origin authentication.
 Encryption is optionally used to protect the firmware package from
 disclosure, and compression is optionally used to reduce the size of
 the protected firmware package. A firmware package loading receipt
 can optionally be generated to acknowledge the successful loading of
 a firmware package. Similarly, a firmware package load error report
 can optionally be generated to convey the failure to load a firmware
 package.

Housley Standards Track [Page 1]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

Table of Contents

 1. Introduction ..3
 1.1. Terminology ..5
 1.2. Architectural Elements5
 1.2.1. Hardware Module Requirements7
 1.2.2. Firmware Package Requirements8
 1.2.3. Bootstrap Loader Requirements9
 1.2.3.1. Legacy Stale Version Processing11
 1.2.3.2. Preferred Stale Version Processing12
 1.2.4. Trust Anchors12
 1.2.5. Cryptographic and Compression Algorithm
 Requirements13
 1.3. Hardware Module Security Architecture14
 1.4. ASN.1 Encoding ..14
 1.5. Protected Firmware Package Loading15
 2. Firmware Package Protection15
 2.1. Firmware Package Protection CMS Content Type Profile18
 2.1.1. ContentInfo ..18
 2.1.2. SignedData ...18
 2.1.2.1. SignerInfo19
 2.1.2.2. EncapsulatedContentInfo20
 2.1.3. EncryptedData20
 2.1.3.1. EncryptedContentInfo21
 2.1.4. CompressedData21
 2.1.4.1. EncapsulatedContentInfo22
 2.1.5. FirmwarePkgData22
 2.2. Signed Attributes ...22
 2.2.1. Content Type23
 2.2.2. Message Digest24
 2.2.3. Firmware Package Identifier24
 2.2.4. Target Hardware Module Identifiers25
 2.2.5. Decrypt Key Identifier26
 2.2.6. Implemented Crypto Algorithms26
 2.2.7. Implemented Compression Algorithms27
 2.2.8. Community Identifiers27
 2.2.9. Firmware Package Information29
 2.2.10. Firmware Package Message Digest30
 2.2.11. Signing Time30
 2.2.12. Content Hints31
 2.2.13. Signing Certificate31
 2.3. Unsigned Attributes32
 2.3.1. Wrapped Firmware Decryption Key33
 3. Firmware Package Load Receipt34
 3.1. Firmware Package Load Receipt CMS Content Type Profile36
 3.1.1. ContentInfo ..36

Housley Standards Track [Page 2]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

 3.1.2. SignedData ...36
 3.1.2.1. SignerInfo37
 3.1.2.2. EncapsulatedContentInfo38
 3.1.3. FirmwarePackageLoadReceipt38
 3.2. Signed Attributes ...40
 3.2.1. Content Type40
 3.2.2. Message Digest40
 3.2.3. Signing Time40
 4. Firmware Package Load Error41
 4.1. Firmware Package Load Error CMS Content Type Profile42
 4.1.1. ContentInfo ..42
 4.1.2. SignedData ...43
 4.1.2.1. SignerInfo43
 4.1.2.2. EncapsulatedContentInfo43
 4.1.3. FirmwarePackageLoadError43
 4.2. Signed Attributes ...49
 4.2.1. Content Type49
 4.2.2. Message Digest49
 4.2.3. Signing Time50
 5. Hardware Module Name ...50
 6. Security Considerations ..51
 6.1. Cryptographic Keys and Algorithms51
 6.2. Random Number Generation51
 6.3. Stale Firmware Package Version Number52
 6.4. Community Identifiers53
 7. References ...54
 7.1. Normative References54
 7.2. Informative References54
 Appendix A: ASN.1 Module ..56

1. Introduction

 This document describes the use of the Cryptographic Message Syntax
 (CMS) [CMS] to protect firmware packages. This document also
 describes the use of CMS for receipts and error reports for firmware
 package loading. The CMS is a data protection encapsulation syntax
 that makes use of ASN.1 [X.208-88, X.209-88]. The protected firmware
 package can be associated with any particular hardware module;
 however, this specification was written with the requirements of
 cryptographic hardware modules in mind, as these modules have strong
 security requirements.

 The firmware package contains object code for one or more
 programmable components that make up the hardware module. The
 firmware package, which is treated as an opaque binary object, is
 digitally signed. Optional encryption and compression are also
 supported. When all three are used, the firmware package is
 compressed, then encrypted, and then signed. Compression simply

Housley Standards Track [Page 3]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

 reduces the size of the firmware package, allowing more efficient
 processing and transmission. Encryption protects the firmware
 package from disclosure, which allows transmission of sensitive
 firmware packages over insecure links. The encryption algorithm and
 mode employed may also provide integrity, protecting the firmware
 package from undetected modification. The encryption protects
 proprietary algorithms, classified algorithms, trade secrets, and
 implementation techniques. The digital signature protects the
 firmware package from undetected modification and provides data
 origin authentication. The digital signature allows the hardware
 module to confirm that the firmware package comes from an acceptable
 source.

 If encryption is used, the firmware-decryption key must be made
 available to the hardware module via a secure path. The key might be
 delivered via physical media or via an independent electronic path.
 One optional mechanism for distributing the firmware-decryption key
 is specified in Section 2.3.1, but any secure key distribution
 mechanism is acceptable.

 The signature verification public key must be made available to the
 hardware module in a manner that preserves its integrity and confirms
 its source. CMS supports the transfer of certificates, and this
 facility can be used to transfer a certificate that contains the
 signature verification public key (a firmware-signing certificate).
 However, use of this facility introduces a level of indirection.
 Ultimately, a trust anchor public key must be made available to the
 hardware module. Section 1.2 establishes a requirement that the
 hardware module store one or more trust anchors.

 Hardware modules may not be capable of accessing certificate
 repositories or delegated path discovery (DPD) servers [DPD&DPV] to
 acquire certificates needed to complete a certification path. Thus,
 it is the responsibility of the firmware package signer to include
 sufficient certificates to enable each module to validate the
 firmware-signer certificate (see Section 2.1.2). Similarly, hardware
 modules may not be capable of accessing a certificate revocation list
 (CRL) repository, an OCSP responder [OCSP], or a delegated path
 validation (DPV) server [DPD&DPV] to acquire revocation status
 information. Thus, if the firmware package signature cannot be
 validated solely with the trust anchor public key and the hardware
 module is not capable of performing full certification path
 validation, then it is the responsibility of the entity loading a
 package into a hardware module to validate the firmware-signer
 certification path prior to loading the package into a hardware
 module. The means by which this external certificate revocation
 status checking is performed is beyond the scope of this
 specification.

Housley Standards Track [Page 4]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

 Hardware modules will only accept firmware packages with a valid
 digital signature. The signature is either validated directly using
 the trust anchor public key or using a firmware-signer certification
 path that is validated to the trust anchor public key. Thus, the
 trust anchors define the set of entities that can create firmware
 packages for the hardware module.

 The disposition of a previously loaded firmware package after the
 successful validation of another firmware package is beyond the scope
 of this specification. The amount of memory available to the
 hardware module will determine the range of alternatives.

 In some cases, hardware modules can generate receipts to acknowledge
 the loading of a particular firmware package. Such receipts can be
 used to determine which hardware modules need to receive an updated
 firmware package whenever a flaw in an earlier firmware package is
 discovered. Hardware modules can also generate error reports to
 indicate the unsuccessful firmware package loading. To implement
 either receipt or error report generation, the hardware module is
 required to have a unique permanent serial number. Receipts and
 error reports can be either signed or unsigned. To generate
 digitally signed receipts or error reports, a hardware module MUST be
 issued its own private signature key and a certificate that contains
 the corresponding signature validation public key. In order to save
 memory with the hardware module, the hardware module might store a
 certificate designator instead of the certificate itself. The
 private signature key requires secure storage.

1.1. Terminology

 In this document, the key words MUST, MUST NOT, REQUIRED, SHOULD,
 SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL are to be interpreted as
 described in [STDWORDS].

1.2. Architectural Elements

 The architecture includes the hardware module, the firmware package,
 and a bootstrap loader. The bootstrap loader MUST have access to one
 or more trusted public keys, called trust anchors, to validate the
 signature on the firmware package. If a signed firmware package load
 receipt or error report is created on behalf of the hardware module,
 then the bootstrap loader MUST have access to a private signature key
 to generate the signature and the signer identifier for the
 corresponding signature validation certificate or its designator. A
 signature validation certificate MAY be included to aid signature
 validation. To implement this optional capability, the hardware
 module MUST have a unique serial number and a private signature key;
 the hardware module MAY also include a certificate that contains the

Housley Standards Track [Page 5]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

 corresponding signature validation public key. These items MUST be
 installed in the hardware module before it is deployed. The private
 key and certificate can be generated and installed as part of the
 hardware module manufacture process. Figure 1 illustrates these
 architectural elements.

 ASN.1 object identifiers are the preferred means of naming the
 architectural elements.

 Details of managing the trust anchors are beyond the scope of this
 specification. However, one or more trust anchors MUST be installed
 in the hardware module using a secure process before it is deployed.
 These trust anchors provide a means of controlling the acceptable
 sources of firmware packages. The hardware module vendor can include
 provisions for secure, remote management of trust anchors. One
 approach is to include trust anchors in the firmware packages
 themselves. This approach is analogous to the optional capability
 described later for updating the bootstrap loader.

 In a cryptographic hardware module, the firmware package might
 implement many different cryptographic algorithms.

 When the firmware package is encrypted, the firmware-decryption key
 and the firmware package MUST both be provided to the hardware
 module. The firmware-decryption key is necessary to use the
 associated firmware package. Generally, separate distribution
 mechanisms will be employed for the firmware-decryption key and the
 firmware package. An optional mechanism for securely distributing
 the firmware-decryption key with the firmware package is specified in
 Section 2.3.1.

Housley Standards Track [Page 6]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

 +--+
 | Hardware Module |
 | |
 | +---------------+ +--------------------------+ |
 | | Bootstrap | | Firmware Package | |
 | | Loader | | | |
 | +---------------+ | +------------------+ | |
 | | : Firmware Package : | |
 | +---------------+ | : Identifier and : | |
 | | Trust | | : Version Number : | |
 | | Anchor(s) | | +------------------+ | |
 | +---------------+ | | |
 | | +-------------+ | |
 | +---------------+ | : Algorithm 1 : | |
 | | Serial Num. | | +-+-----------+-+ | |
 | +---------------+ | : Algorithm 2 : | |
 | | +-+-----------+-+ | |
 | +---------------+ | : Algorithm n : | |
 | | Hardware | | +-------------+ | |
 | | Module Type | | | |
 | +---------------+ +--------------------------+ |
 | |
 | +------------------------------------+ |
 | | Optional Private Signature Key & | |
 | | Signature Validation Certificate | |
 | | or the Certificate Designator | |
 | +------------------------------------+ |
 | |
 +--+

 Figure 1. Architectural Elements

1.2.1. Hardware Module Requirements

 Many different vendors develop hardware modules, and each vendor
 typically identifies its modules by product type (family) and
 revision level. A unique object identifier MUST name each hardware
 module type and revision.

 Each hardware module within a hardware module family SHOULD have a
 unique permanent serial number. However, if the optional receipt or
 error report generation capability is implemented, then the hardware
 module MUST have a unique permanent serial number. If the optional
 receipt or error report signature capability is implemented, then the
 hardware module MUST have a private signature key and a certificate
 containing the corresponding public signature validation key or its
 designator. If a serial number is present, the bootstrap loader uses

Housley Standards Track [Page 7]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

 it for authorization decisions (see Section 2.2.8), receipt
 generation (see Section 3), and error report generation (see
 Section 4).

 When the hardware module includes more than one firmware-programmable
 component, the bootstrap loader distributes components of the package
 to the appropriate components within the hardware module after the
 firmware package is validated. The bootstrap loader is discussed
 further in Section 1.2.3.

1.2.2. Firmware Package Requirements

 Two approaches to naming firmware packages are supported: legacy and
 preferred. Firmware package names are placed in a CMS signed
 attribute, not in the firmware package itself.

 Legacy firmware package names are simply octet strings, and no
 structure is assumed. This firmware package name form is supported
 in order to facilitate existing configuration management systems. We
 assume that the firmware signer and the bootstrap loader will
 understand any internal structure to the octet string. In
 particular, given two legacy firmware package names, we assume that
 the firmware signer and the bootstrap loader will be able to
 determine which one represents the newer version of the firmware
 package. This capability is necessary to implement the stale version
 feature. If a firmware package with a disastrous flaw is released,
 subsequent firmware package versions MAY designate a stale legacy
 firmware package name in order to prevent subsequent rollback to the
 stale version or versions earlier than the stale version.

 Preferred firmware package names are a combination of the firmware
 package object identifier and a version number. A unique object
 identifier MUST identify the collection of features that characterize
 the firmware package. For example, firmware packages for a cable
 modem and a wireless LAN network interface card warrant distinct
 object identifiers. Similarly, firmware packages that implement
 distinct suites of cryptographic algorithms and modes of operation,
 or that emulate different (non-programmable) cryptographic devices
 warrant distinct object identifiers. The version number MUST
 identify a particular build or release of the firmware package. The
 version number MUST be a monotonically increasing non-negative
 integer. Generally, an earlier version is replaced with a later one.
 If a firmware package with a disastrous flaw is released, subsequent
 firmware package versions MAY designate a stale version number to
 prevent subsequent rollback to the stale version or versions earlier
 than the stale version.

Housley Standards Track [Page 8]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

 Firmware packages are developed to run on one or more hardware module
 type. The firmware package digital signature MUST bind the list of
 supported hardware module object identifiers to the firmware package.

 In many cases, the firmware package signature will be validated
 directly with the trust anchor public key, avoiding the need to
 construct certification paths. Alternatively, the trust anchor can
 delegate firmware package signing to another public key through a
 certification path. In the latter case, the firmware package SHOULD
 contain the certificates needed to construct the certification path
 that begins with a certificate issued by the trust anchors and ends
 with a certificate issued to the firmware package signer.

 The firmware package MAY contain a list of community identifiers.
 These identifiers name the hardware modules that are authorized to
 load the firmware package. If the firmware package contains a list
 of community identifiers, then the bootstrap loader MUST reject the
 firmware package if the hardware module is not a member of one of the
 identified communities.

 When a hardware module includes multiple programmable components, the
 firmware package SHOULD contain executable code for all of the
 components. Internal tagging within the firmware package MUST tell
 the bootstrap loader which portion of the overall firmware package is
 intended for each component; however, this tagging is expected to be
 specific to each hardware module. Because this specification treats
 the firmware package as an opaque binary object, the format of the
 firmware package is beyond the scope of this specification.

1.2.3. Bootstrap Loader Requirements

 The bootstrap loader MUST have access to a physical interface and any
 related driver or protocol software necessary to obtain a firmware
 package. The same interface SHOULD be used to deliver receipts and
 error reports. Details of the physical interface as well as the
 driver or protocol software are beyond the scope of this
 specification.

 The bootstrap loader can be a permanent part of the hardware module,
 or it can be replaced by loading a firmware package. In Figure 1,
 the bootstrap loader is implemented as separate logic within the
 hardware module. Not all hardware modules will include the ability
 to replace or update the bootstrap loader, and this specification
 does not mandate such support.

 If the bootstrap loader can be loaded by a firmware package, an
 initial bootstrap loader MUST be installed in non-volatile memory
 prior to deployment. All bootstrap loaders, including an initial

Housley Standards Track [Page 9]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

 bootstrap loader if one is employed, MUST meet the requirements in
 this section. However, the firmware package containing the bootstrap
 loader MAY also contain other routines.

 The bootstrap loader requires access to cryptographic routines.
 These routines can be implemented specifically for the bootstrap
 loader, or they can be shared with other hardware module features.
 The bootstrap loader MUST have access to a one-way hash function and
 digital signature verification routines to validate the digital
 signature on the firmware package and to validate the certification
 path for the firmware-signing certificate.

 If firmware packages are encrypted, the bootstrap loader MUST have
 access to a decryption routine. Access to a corresponding encryption
 function is not required, since hardware modules need not be capable
 of generating firmware packages. Because some symmetric encryption
 algorithm implementations (such as AES [AES]) employ separate logic
 for encryption and decryption, some hardware module savings might
 result.

 If firmware packages are compressed, the bootstrap loader MUST also
 have access to a decompression function. This function can be
 implemented specifically for the bootstrap loader, or it can be
 shared with other hardware module features. Access to a
 corresponding compression function is not required, since hardware
 modules need not be capable of generating firmware packages.

 If the optional receipt generation or error report capability is
 supported, the bootstrap loader MUST have access to the hardware
 module serial number and the object identifier for the hardware
 module type. If the optional signed receipt generation or signed
 error report capability is supported, the bootstrap loader MUST also
 have access to a one-way hash function and digital signature
 routines, the hardware module private signing key, and the
 corresponding signature validation certificate or its designator.

 The bootstrap loader requires access to one or more trusted public
 keys, called trust anchors, to validate the firmware package digital
 signature. One or more trust anchors MUST be installed in non-
 volatile memory prior to deployment. The bootstrap loader MUST
 reject a firmware package if it cannot validate the signature, which
 MAY require the construction of a valid certification path from the
 firmware-signing certificate to one of the trust anchors [PROFILE].
 However, in many cases, the firmware package signature will be
 validated directly with the trust anchor public key, avoiding the
 need to construct certification paths.

Housley Standards Track [Page 10]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

 The bootstrap loader MUST reject a firmware package if the list of
 supported hardware module type identifiers within the firmware
 package does not include the object identifier of the hardware
 module.

 The bootstrap loader MUST reject a firmware package if the firmware
 package includes a list of community identifiers and the hardware
 module is not a member of one of the listed communities. The means
 of determining community membership is beyond the scope of this
 specification.

 The bootstrap loader MUST reject a firmware package if it cannot
 successfully decrypt the firmware package using the firmware-
 decryption key available to the hardware module. The firmware
 package contains an identifier of the firmware-decryption key needed
 for decryption.

 When an earlier version of a firmware package is replacing a later
 one, the bootstrap loader SHOULD generate a warning. The manner in
 which a warning is generated is highly dependent on the hardware
 module and the environment in which it is being used. If a firmware
 package with a disastrous flaw is released and subsequent firmware
 package versions designate a stale version, the bootstrap loader
 SHOULD prevent loading of the stale version and versions earlier than
 the stale version.

1.2.3.1. Legacy Stale Version Processing

 In case a firmware package with a disastrous flaw is released,
 subsequent firmware package versions that employ the legacy firmware
 package name form MAY include a stale legacy firmware package name to
 prevent subsequent rollback to the stale version or versions earlier
 than the stale version. As described in the Security Considerations
 section of this document, the inclusion of a stale legacy firmware
 package name in a firmware package cannot completely prevent
 subsequent use of the stale firmware package. However, many hardware
 modules are expected to have very few firmware packages written for
 them, allowing the stale firmware package version feature to provide
 important protections.

 Non-volatile storage for stale version numbers is needed. The number
 of stale legacy firmware package names that can be stored depends on
 the amount of storage that is available. When a firmware package is
 loaded and it contains a stale legacy firmware package name, then it
 SHOULD be added to a list kept in non-volatile storage. When
 subsequent firmware packages are loaded, the legacy firmware package

Housley Standards Track [Page 11]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

 name of the new package is compared to the list in non-volatile
 storage. If the legacy firmware package name represents the same
 version or an older version of a member of the list, then the new
 firmware packages SHOULD be rejected.

 The amount of non-volatile storage that needs to be dedicated to
 saving legacy firmware package names and stale legacy firmware
 packages names depends on the number of firmware packages that are
 likely to be developed for the hardware module.

1.2.3.2. Preferred Stale Version Processing

 If a firmware package with a disastrous flaw is released, subsequent
 firmware package versions that employ preferred firmware package name
 form MAY include a stale version number to prevent subsequent
 rollback to the stale version or versions earlier than the stale
 version. As described in the Security Considerations section of this
 document, the inclusion of a stale version number in a firmware
 package cannot completely prevent subsequent use of the stale
 firmware package. However, many hardware modules are expected to
 have very few firmware packages written for them, allowing the stale
 firmware package version feature to provide important protections.

 Non-volatile storage for stale version numbers is needed. The number
 of stale version numbers that can be stored depends on the amount of
 storage that is available. When a firmware package is loaded and it
 contains a stale version number, then the object identifier of the
 firmware package and the stale version number SHOULD be added to a
 list that is kept in non-volatile storage. When subsequent firmware
 packages are loaded, the object identifier and version number of the
 new package are compared to the list in non-volatile storage. If the
 object identifier matches and the version number is less than or
 equal to the stale version number, then the new firmware packages
 SHOULD be rejected.

 The amount of non-volatile storage that needs to be dedicated to
 saving firmware package identifiers and stale version numbers depends
 on the number of firmware packages that are likely to be developed
 for the hardware module.

1.2.4. Trust Anchors

 A trust anchor MUST consist of a public key signature algorithm and
 an associated public key, which MAY optionally include parameters. A
 trust anchor MUST also include a public key identifier. A trust
 anchor MAY also include an X.500 distinguished name.

Housley Standards Track [Page 12]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

 The trust anchor public key is used in conjunction with the signature
 validation algorithm in two different ways. First, the trust anchor
 public key is used directly to validate the firmware package
 signature. Second, the trust anchor public key is used to validate
 an X.509 certification path, and then the subject public key in the
 final certificate in the certification path is used to validate the
 firmware package signature.

 The public key names the trust anchor, and each public key has a
 public key identifier. The public key identifier identifies the
 trust anchor as the signer when it is used directly to validate
 firmware package signatures. This key identifier can be stored with
 the trust anchor, or it can be computed from the public key whenever
 needed.

 The optional trusted X.500 distinguished name MUST be present in
 order for the trust anchor public key to be used to validate an X.509
 certification path. Without an X.500 distinguished name,
 certification path construction cannot use the trust anchor.

1.2.5. Cryptographic and Compression Algorithm Requirements

 A firmware package for a cryptographic hardware module includes
 cryptographic algorithm implementations. In addition, a firmware
 package for a non-cryptographic hardware module will likely include
 cryptographic algorithm implementations to support the bootstrap
 loader in the validation of firmware packages.

 A unique algorithm object identifier MUST be assigned for each
 cryptographic algorithm and mode implemented by a firmware package.
 A unique algorithm object identifier MUST also be assigned for each
 compression algorithm implemented by a firmware package. The
 algorithm object identifiers can be used to determine whether a
 particular firmware package satisfies the needs of a particular
 application. To facilitate the development of algorithm-agile
 applications, the cryptographic module interface SHOULD allow
 applications to query the cryptographic module for the object
 identifiers associated with each cryptographic algorithm contained in
 the currently loaded firmware package. Applications SHOULD also be
 able to query the cryptographic module to determine attributes
 associated with each algorithm. Such attributes might include the
 algorithm type (symmetric encryption, asymmetric encryption, key
 agreement, one-way hash function, digital signature, and so on), the
 algorithm block size or modulus size, and parameters for asymmetric
 algorithms. This specification does not establish the conventions
 for the retrieval of algorithm identifiers or algorithm attributes.

Housley Standards Track [Page 13]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

1.3. Hardware Module Security Architecture

 The bootstrap loader MAY be permanently stored in read-only memory or
 separately loaded into non-volatile memory as discussed above.

 In most hardware module designs, the firmware package execution
 environment offers a single address space. If it does, the firmware
 package SHOULD contain a complete firmware package load for the
 hardware module. In this situation, the firmware package does not
 contain a partial or incremental set of functions. A complete
 firmware package load will minimize complexity and avoid potential
 security problems. From a complexity perspective, the incremental
 loading of packages makes it necessary for each package to identify
 any other packages that are required (its dependencies), and the
 bootstrap loader needs to verify that all of the dependencies are
 satisfied before attempting to execute the firmware package. When a
 hardware module is based on a general purpose processor or a digital
 signal processor, it is dangerous to allow arbitrary packages to be
 loaded simultaneously unless there is a reference monitor to ensure
 that independent portions of the code cannot interfere with one
 another. Also, it is difficult to evaluate arbitrary combinations of
 software modules [SECREQMTS]. For these reasons, a complete firmware
 package load is RECOMMENDED; however, this specification allows the
 firmware signer to identify dependencies between firmware packages in
 order to handle all situations.

 The firmware packages MAY have dependencies on routines provided by
 other firmware packages. To minimize the security evaluation
 complexity of a hardware module employing such a design, the firmware
 package MUST identify the package identifiers (and the minimum
 version numbers when the preferred firmware package name form is
 used) of the packages upon which it depends. The bootstrap loader
 MUST reject a firmware package load if it contains a dependency on a
 firmware package that is not available.

 Loading a firmware package can impact the satisfactory resolution of
 dependencies of other firmware packages that are already part of the
 hardware module configuration. For this reason, the bootstrap loader
 MUST reject the loading of a firmware package if the dependencies of
 any firmware package in the resulting configurations will be
 unsatisfied.

1.4. ASN.1 Encoding

 The CMS uses Abstract Syntax Notation One (ASN.1) [X.208-88,
 X.209-88]. ASN.1 is a formal notation used for describing data
 protocols, regardless of the programming language used by the
 implementation. Encoding rules describe how the values defined in

Housley Standards Track [Page 14]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

 ASN.1 will be represented for transmission. The Basic Encoding Rules
 (BER) are the most widely employed rule set, but they offer more than
 one way to represent data structures. For example, definite length
 encoding and indefinite length encoding are supported. This
 flexibility is not desirable when digital signatures are used. As a
 result, the Distinguished Encoding Rules (DER) [X.509-88] were
 invented. DER is a subset of BER that ensures a single way to
 represent a given value. For example, DER always employs definite
 length encoding.

 In this specification, digitally signed structures MUST be encoded
 with DER. Other structures do not require DER, but the use of
 definite length encoding is strongly RECOMMENDED. By always using
 definite length encoding, the bootstrap loader will have fewer
 options to implement. In situations where there is very high
 confidence that only definite length encoding will be used, support
 for indefinite length decoding MAY be omitted.

1.5. Protected Firmware Package Loading

 This document does not attempt to specify a physical interface, any
 related driver software, or a protocol necessary for loading firmware
 packages. Many different delivery mechanisms are envisioned,
 including portable memory devices, file transfer, and web pages.
 Section 2 of this specification defines the format that MUST be
 presented to the hardware module regardless of the interface that is
 used. This specification also specifies the format of the response
 that MAY be generated by the hardware module. Section 3 of this
 specification defines the format that MAY be returned by the hardware
 module when a firmware package loads successfully. Section 4 of this
 specification defines the format that MAY be returned by the hardware
 module when a firmware package load is unsuccessful. The firmware
 package load receipts and firmware package load error reports can be
 either signed or unsigned.

2. Firmware Package Protection

 The Cryptographic Message Syntax (CMS) is used to protect a firmware
 package, which is treated as an opaque binary object. A digital
 signature is used to protect the firmware package from undetected
 modification and to provide data origin authentication. Encryption
 is optionally used to protect the firmware package from disclosure,
 and compression is optionally used to reduce the size of the
 protected firmware package. The CMS ContentInfo content type MUST
 always be present, and it MUST encapsulate the CMS SignedData content
 type. If the firmware package is encrypted, then the CMS SignedData
 content type MUST encapsulate the CMS EncryptedData content type. If
 the firmware package is compressed, then either the CMS SignedData

Housley Standards Track [Page 15]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

 content type (when encryption is not used) or the CMS EncryptedData
 content type (when encryption is used) MUST encapsulate the CMS
 CompressedData content type. Finally, (1) the CMS SignedData content
 type (when neither encryption nor compression is used), (2) the CMS
 EncryptedData content type (when encryption is used, but compression
 is not), or (3) the CMS CompressedData content type (when compression
 is used) MUST encapsulate the simple firmware package using the
 FirmwarePkgData content type defined in this specification (see
 Section 2.1.5).

 The firmware package protection is summarized as follows (see [CMS]
 for the full syntax):

 ContentInfo {
 contentType id-signedData, -- (1.2.840.113549.1.7.2)
 content SignedData
 }

 SignedData {
 version CMSVersion, -- always set to 3
 digestAlgorithms DigestAlgorithmIdentifiers, -- Only one
 encapContentInfo EncapsulatedContentInfo,
 certificates CertificateSet, -- Signer cert. path
 crls CertificateRevocationLists, -- Optional
 signerInfos SET OF SignerInfo -- Only one
 }

 SignerInfo {
 version CMSVersion, -- always set to 3
 sid SignerIdentifier,
 digestAlgorithm DigestAlgorithmIdentifier,
 signedAttrs SignedAttributes, -- Required
 signatureAlgorithm SignatureAlgorithmIdentifier,
 signature SignatureValue,
 unsignedAttrs UnsignedAttributes -- Optional
 }

Housley Standards Track [Page 16]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

 EncapsulatedContentInfo {
 eContentType id-encryptedData, -- (1.2.840.113549.1.7.6)
 -- OR --
 id-ct-compressedData,
 -- (1.2.840.113549.1.9.16.1.9)
 -- OR --
 id-ct-firmwarePackage,
 -- (1.2.840.113549.1.9.16.1.16)
 eContent OCTET STRING
 } -- Contains EncryptedData OR
 -- CompressedData OR
 -- FirmwarePkgData

 EncryptedData {
 version CMSVersion, -- Always set to 0
 encryptedContentInfo EncryptedContentInfo,
 unprotectedAttrs UnprotectedAttributes -- Omit
 }

 EncryptedContentInfo {
 contentType id-ct-compressedData,
 -- (1.2.840.113549.1.9.16.1.9)
 -- OR --
 id-ct-firmwarePackage,
 -- (1.2.840.113549.1.9.16.1.16)
 contentEncryptionAlgorithm ContentEncryptionAlgorithmIdentifier,
 encryptedContent OCTET STRING
 } -- Contains CompressedData OR
 -- FirmwarePkgData

 CompressedData {
 version CMSVersion, -- Always set to 0
 compressionAlgorithm CompressionAlgorithmIdentifier,
 encapContentInfo EncapsulatedContentInfo
 }

 EncapsulatedContentInfo {
 eContentType id-ct-firmwarePackage,
 -- (1.2.840.113549.1.9.16.1.16)
 eContent OCTET STRING -- Contains FirmwarePkgData
 }

 FirmwarePkgData OCTET STRING -- Contains firmware package

Housley Standards Track [Page 17]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

2.1. Firmware Package Protection CMS Content Type Profile

 This section specifies the conventions for using the CMS ContentInfo,
 SignedData, EncryptedData, and CompressedData content types. It also
 defines the FirmwarePkgData content type.

2.1.1. ContentInfo

 The CMS requires that the outermost encapsulation be ContentInfo
 [CMS]. The fields of ContentInfo are used as follows:

 contentType indicates the type of the associated content, and in
 this case, the encapsulated type is always SignedData. The
 id-signedData (1.2.840.113549.1.7.2) object identifier MUST be
 present in this field.

 content holds the associated content, and in this case, the
 content field MUST contain SignedData.

2.1.2. SignedData

 The SignedData content type [CMS] contains the signed firmware
 package (which might be compressed, encrypted, or compressed and then
 encrypted prior to signature), the certificates needed to validate
 the signature, and one digital signature value. The fields of
 SignedData are used as follows:

 version is the syntax version number, and in this case, it MUST be
 set to 3.

 digestAlgorithms is a collection of message digest algorithm
 identifiers, and in this case, it MUST contain a single message
 digest algorithm identifier. The message digest algorithm
 employed by the firmware package signer MUST be present.

 encapContentInfo contains the signed content, consisting of a content
 type identifier and the content itself. The use of the
 EncapsulatedContentInfo type is discussed further in Section
 2.1.2.2.

 certificates is an optional collection of certificates. If the trust
 anchor signed the firmware package directly, then certificates
 SHOULD be omitted. If it did not, then certificates SHOULD
 include the X.509 certificate of the firmware package signer. The
 set of certificates SHOULD be sufficient for the bootstrap loader
 to construct a certification path from the trust anchor to the
 firmware-signer’s certificate. PKCS#6 extended certificates

Housley Standards Track [Page 18]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

 [PKCS#6] and attribute certificates (either version 1 or
 version 2) [X.509-97, X.509-00, ACPROFILE] MUST NOT be included in
 the set of certificates.

 crls is an optional collection of certificate revocation lists
 (CRLs), and in this case, CRLs SHOULD NOT be included by the
 firmware package signer. It is anticipated that firmware packages
 may be generated, signed, and made available in repositories for
 downloading into hardware modules. In such contexts, it would be
 difficult for the firmware package signer to include timely CRLs
 in the firmware package. However, because the CRLs are not
 covered by the signature, timely CRLs MAY be inserted by some
 other party before the firmware package is delivered to the
 hardware module.

 signerInfos is a collection of per-signer information, and in this
 case, the collection MUST contain exactly one SignerInfo. The use
 of the SignerInfo type is discussed further in Section 2.1.2.1.

2.1.2.1. SignerInfo

 The firmware package signer is represented in the SignerInfo type.
 The fields of SignerInfo are used as follows:

 version is the syntax version number, and it MUST be 3.

 sid identifies the signer’s public key. CMS supports two
 alternatives: issuerAndSerialNumber and subjectKeyIdentifier.
 However, the bootstrap loader MUST support the
 subjectKeyIdentifier alternative, which identifies the signer’s
 public key directly. When this public key is contained in a
 certificate, this identifier SHOULD appear in the X.509
 subjectKeyIdentifier extension.

 digestAlgorithm identifies the message digest algorithm, and any
 associated parameters, used by the firmware package signer. It
 MUST contain the message digest algorithms employed by the
 firmware package signer. (Note that this message digest algorithm
 identifier MUST be the same as the one carried in the
 digestAlgorithms value in SignedData.)

 signedAttrs is an optional collection of attributes that are signed
 along with the content. The signedAttrs are optional in the CMS,
 but in this specification, signedAttrs are REQUIRED for the
 firmware package; however, implementations MUST ignore
 unrecognized signed attributes. The SET OF attributes MUST be DER

Housley Standards Track [Page 19]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

 encoded [X.509-88]. Section 2.2 of this document lists the
 attributes that MUST be included in the collection; other
 attributes MAY be included as well.

 signatureAlgorithm identifies the signature algorithm, and any
 associated parameters, used by the firmware package signer to
 generate the digital signature.

 signature is the digital signature value.

 unsignedAttrs is an optional SET of attributes that are not signed.
 As described in Section 2.3, this set can only contain a single
 instance of the wrapped-firmware-decryption-key attribute and no
 others.

2.1.2.2. EncapsulatedContentInfo

 The EncapsulatedContentInfo content type encapsulates the firmware
 package, which might be compressed, encrypted, or compressed and then
 encrypted prior to signature. The firmware package, in any of these
 formats, is carried within the EncapsulatedContentInfo type. The
 fields of EncapsulatedContentInfo are used as follows:

 eContentType is an object identifier that uniquely specifies the
 content type, and in this case, the value MUST be id-encryptedData
 (1.2.840.113549.1.7.6), id-ct-compressedData
 (1.2.840.113549.1.9.16.1.9), or id-ct-firmwarePackage
 (1.2.840.113549.1.9.16.1.16). When eContentType contains id-
 encryptedData, the firmware package was encrypted prior to
 signing, and may also have been compressed prior to encryption.
 When it contains id-ct-compressedData, the firmware package was
 compressed prior to signing, but was not encrypted. When it
 contains id-ct-firmwarePackage, the firmware package was not
 compressed or encrypted prior to signing.

 eContent contains the signed firmware package, which might also be
 encrypted, compressed, or compressed and then encrypted, prior to
 signing. The content is encoded as an octet string. The eContent
 octet string need not be DER encoded.

2.1.3. EncryptedData

 The EncryptedData content type [CMS] contains the encrypted firmware
 package (which might be compressed prior to encryption). However, if
 the firmware package was not encrypted, the EncryptedData content
 type is not present. The fields of EncryptedData are used as
 follows:

Housley Standards Track [Page 20]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

 version is the syntax version number, and in this case, version MUST
 be 0.

 encryptedContentInfo is the encrypted content information. The use
 of the EncryptedContentInfo type is discussed further in Section
 2.1.3.1.

 unprotectedAttrs is an optional collection of unencrypted attributes,
 and in this case, unprotectedAttrs MUST NOT be present.

2.1.3.1. EncryptedContentInfo

 The encrypted firmware package, which might be compressed prior to
 encryption, is encapsulated in the EncryptedContentInfo type. The
 fields of EncryptedContentInfo are used as follows:

 contentType indicates the type of content, and in this case, it MUST
 contain either id-ct-compressedData (1.2.840.113549.1.9.16.1.9) or
 id-ct-firmwarePackage (1.2.840.113549.1.9.16.1.16). When it
 contains id-ct-compressedData, then the firmware package was
 compressed prior to encryption. When it contains id-ct-
 firmwarePackage, then the firmware package was not compressed
 prior to encryption.

 contentEncryptionAlgorithm identifies the firmware-encryption
 algorithm, and any associated parameters, used to encrypt the
 firmware package.

 encryptedContent is the result of encrypting the firmware package.
 The field is optional; however, in this case, it MUST be present.

2.1.4. CompressedData

 The CompressedData content type [COMPRESS] contains the compressed
 firmware package. If the firmware package was not compressed, then
 the CompressedData content type is not present. The fields of
 CompressedData are used as follows:

 version is the syntax version number; in this case, it MUST be 0.

 compressionAlgorithm identifies the compression algorithm, and any
 associated parameters, used to compress the firmware package.

 encapContentInfo is the compressed content, consisting of a content
 type identifier and the content itself. The use of the
 EncapsulatedContentInfo type is discussed further in Section
 2.1.4.1.

Housley Standards Track [Page 21]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

2.1.4.1. EncapsulatedContentInfo

 The CompressedData content type encapsulates the compressed firmware
 package, and it is carried within the EncapsulatedContentInfo type.
 The fields of EncapsulatedContentInfo are used as follows:

 eContentType is an object identifier that uniquely specifies the
 content type, and in this case, it MUST be the value of id-ct-
 firmwarePackage (1.2.840.113549.1.9.16.1.16).

 eContent is the compressed firmware package, encoded as an octet
 string. The eContent octet string need not be DER encoded.

2.1.5. FirmwarePkgData

 The FirmwarePkgData content type contains the firmware package. It
 is a straightforward encapsulation in an octet string, and it need
 not be DER encoded.

 The FirmwarePkgData content type is identified by the id-ct-
 firmwarePackage object identifier:

 id-ct-firmwarePackage OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
 smime(16) ct(1) 16 }

 The FirmwarePkgData content type is a simple octet string:

 FirmwarePkgData ::= OCTET STRING

2.2. Signed Attributes

 The firmware package signer MUST digitally sign a collection of
 attributes along with the firmware package. Each attribute in the
 collection MUST be DER encoded [X.509-88]. The syntax for attributes
 is defined in [CMS], but it is repeated here for convenience:

 Attribute ::= SEQUENCE {
 attrType OBJECT IDENTIFIER,
 attrValues SET OF AttributeValue }

 AttributeValue ::= ANY

 Each of the attributes used with this profile has a single attribute
 value, even though the syntax is defined as a SET OF AttributeValue.
 There MUST be exactly one instance of AttributeValue present.

Housley Standards Track [Page 22]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

 The SignedAttributes syntax within signerInfo is defined as a SET OF
 Attribute. The SignedAttributes MUST include only one instance of
 any particular attribute.

 The firmware package signer MUST include the following four
 attributes: content-type, message-digest, firmware-package-
 identifier, and target-hardware-module-identifiers.

 If the firmware package is encrypted, then the firmware package
 signer MUST also include the decrypt-key-identifier attribute.

 If the firmware package implements cryptographic algorithms, then the
 firmware package signer MAY also include the implemented-crypto-
 algorithms attribute. Similarly, if the firmware package implements
 compression algorithms, then the firmware package signer MAY also
 include the implemented-compress-algorithms attribute.

 If the firmware package is intended for use only by specific
 communities, then the firmware package signer MUST also include the
 community-identifiers attribute.

 If the firmware package depends on the presence of one or more other
 firmware packages to operate properly, then the firmware package
 signer SHOULD also include the firmware-package-info attribute. For
 example, the firmware-package-info attribute dependencies field might
 indicate that the firmware package contains a dependency on a
 particular bootstrap loader or separation kernel.

 The firmware package signer SHOULD also include the three following
 attributes: firmware-package-message-digest, signing-time, and
 content-hints. Additionally, if the firmware package signer has a
 certificate (meaning that the firmware package signer is not always
 configured as a trust anchor), then the firmware package signer
 SHOULD also include the signing-certificate attribute.

 The firmware package signer MAY include any other attribute that it
 deems appropriate.

2.2.1. Content Type

 The firmware package signer MUST include a content-type attribute
 with the value of id-encryptedData (1.2.840.113549.1.7.6), id-ct-
 compressedData (1.2.840.113549.1.9.16.1.9), or id-ct-firmwarePackage
 (1.2.840.113549.1.9.16.1.16). When it contains id-encryptedData, the
 firmware package was encrypted prior to signing. When it contains
 id-ct-compressedData, the firmware package was compressed prior to
 signing, but was not encrypted. When it contains

Housley Standards Track [Page 23]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

 id-ct-firmwarePackage, the firmware package was not compressed or
 encrypted prior to signing. Section 11.1 of [CMS] defines the
 content-type attribute.

2.2.2. Message Digest

 The firmware package signer MUST include a message-digest attribute,
 having as its value the message digest computed on the
 encapContentInfo eContent octet string, as defined in Section
 2.1.2.2. This octet string contains the firmware package, and it MAY
 be compressed, encrypted, or both compressed and encrypted. Section
 11.2 of [CMS] defines the message-digest attribute.

2.2.3. Firmware Package Identifier

 The firmware-package-identifier attribute names the protected
 firmware package. Two approaches to naming firmware packages are
 supported: legacy and preferred. The firmware package signer MUST
 include a firmware-package-identifier attribute using one of these
 name forms.

 A legacy firmware package name is an octet string, and no structure
 within the octet string is assumed.

 A preferred firmware package name is a combination of an object
 identifier and a version number. The object identifier names a
 collection of functions implemented by the firmware package, and the
 version number is a non-negative integer that identifies a particular
 build or release of the firmware package.

 If a firmware package with a disastrous flaw is released, the
 firmware package that repairs the previously distributed flaw MAY
 designate a stale firmware package version to prevent the reloading
 of the flawed version. The hardware module bootstrap loader SHOULD
 prevent subsequent rollback to the stale version or versions earlier
 than the stale version. When the legacy firmware package name form
 is used, the stale version is indicated by a stale legacy firmware
 package name, which is an octet string. We assume that the firmware
 package signer and the bootstrap loader can determine whether a given
 legacy firmware package name represents a version that is more recent
 than the stale one. When the preferred firmware package name form is
 used, the stale version is indicated by a stale version number, which
 is an integer.

Housley Standards Track [Page 24]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

 The following object identifier identifies the firmware-package-
 identifier attribute:

 id-aa-firmwarePackageID OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
 smime(16) aa(2) 35 }

 The firmware-package-identifier attribute values have ASN.1 type
 FirmwarePackageIdentifier:

 FirmwarePackageIdentifier ::= SEQUENCE {
 name PreferredOrLegacyPackageIdentifier,
 stale PreferredOrLegacyStalePackageIdentifier OPTIONAL }

 PreferredOrLegacyPackageIdentifier ::= CHOICE {
 preferred PreferredPackageIdentifier,
 legacy OCTET STRING }

 PreferredPackageIdentifier ::= SEQUENCE {
 fwPkgID OBJECT IDENTIFIER,
 verNum INTEGER (0..MAX) }

 PreferredOrLegacyStalePackageIdentifier ::= CHOICE {
 preferredStaleVerNum INTEGER (0..MAX),
 legacyStaleVersion OCTET STRING }

2.2.4. Target Hardware Module Identifiers

 The target-hardware-module-identifiers attribute names the types of
 hardware modules that the firmware package supports. A unique object
 identifier names each supported hardware model type and revision.

 The bootstrap loader MUST reject the firmware package if its own
 hardware module type identifier is not listed in the target-
 hardware-module-identifiers attribute.

 The following object identifier identifies the target-hardware-
 module-identifiers attribute:

 id-aa-targetHardwareIDs OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
 smime(16) aa(2) 36 }

 The target-hardware-module-identifiers attribute values have ASN.1
 type TargetHardwareIdentifiers:

 TargetHardwareIdentifiers ::= SEQUENCE OF OBJECT IDENTIFIER

Housley Standards Track [Page 25]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

2.2.5. Decrypt Key Identifier

 The decrypt-key-identifier attribute names the symmetric key needed
 to decrypt the encapsulated firmware package. The CMS EncryptedData
 content type is used when the firmware package is encrypted. The
 decrypt-key-identifier signed attribute is carried in the SignedData
 content type that encapsulates EncryptedData content type, naming the
 symmetric key needed to decrypt the firmware package. No particular
 structure is imposed on the key identifier. The means by which the
 firmware-decryption key is securely distributed to all modules that
 are authorized to use the associated firmware package is beyond the
 scope of this specification; however, an optional mechanism for
 securely distributing the firmware-decryption key with the firmware
 package is specified in Section 2.3.1.

 The following object identifier identifies the decrypt-key-identifier
 attribute:

 id-aa-decryptKeyID OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
 smime(16) aa(2) 37 }

 The decrypt-key-identifier attribute values have ASN.1 type
 DecryptKeyIdentifier:

 DecryptKeyIdentifier ::= OCTET STRING

2.2.6. Implemented Crypto Algorithms

 The implemented-crypto-algorithms attribute MAY be present in the
 SignedAttributes, and it names the cryptographic algorithms that are
 implemented by the firmware package and available to applications.
 Only those algorithms that are made available at the interface of the
 cryptographic module are listed. Any cryptographic algorithm that is
 used internally and is not accessible via the cryptographic module
 interface MUST NOT be listed. For example, if the firmware package
 implements the decryption algorithm for future firmware package
 installations and this algorithm is not made available for other
 uses, then the firmware-decryption algorithm would not be listed.

 The object identifier portion of AlgorithmIdentifier identifies an
 algorithm and its mode of use. No algorithm parameters are included.
 Cryptographic algorithms include traffic-encryption algorithms, key-
 encryption algorithms, key transport algorithms, key agreement
 algorithms, one-way hash algorithms, and digital signature
 algorithms. Cryptographic algorithms do not include compression
 algorithms.

Housley Standards Track [Page 26]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

 The following object identifier identifies the implemented-crypto-
 algorithms attribute:

 id-aa-implCryptoAlgs OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
 smime(16) aa(2) 38 }

 The implemented-crypto-algorithms attribute values have ASN.1 type
 ImplementedCryptoAlgorithms:

 ImplementedCryptoAlgorithms ::= SEQUENCE OF OBJECT IDENTIFIER

2.2.7. Implemented Compression Algorithms

 The implemented-compress-algorithms attribute MAY be present in the
 SignedAttributes, and it names the compression algorithms that are
 implemented by the firmware package and available to applications.
 Only those algorithms that are made available at the interface of the
 hardware module are listed. Any compression algorithm that is used
 internally and is not accessible via the hardware module interface
 MUST NOT be listed. For example, if the firmware package implements
 a decompression algorithm for future firmware package installations
 and this algorithm is not made available for other uses, then the
 firmware-decompression algorithm would not be listed.

 The object identifier portion of AlgorithmIdentifier identifies a
 compression algorithm. No algorithm parameters are included.

 The following object identifier identifies the implemented-compress-
 algorithms attribute:

 id-aa-implCompressAlgs OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
 smime(16) aa(2) 43 }

 The implemented-compress-algorithms attribute values have ASN.1 type
 ImplementedCompressAlgorithms:

 ImplementedCompressAlgorithms ::= SEQUENCE OF OBJECT IDENTIFIER

2.2.8. Community Identifiers

 If present in the SignedAttributes, the community-identifiers
 attribute names the communities that are permitted to execute the
 firmware package. The bootstrap loader MUST reject the firmware
 package if the hardware module is not a member of one of the
 identified communities. The means of assigning community membership
 is beyond the scope of this specification.

Housley Standards Track [Page 27]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

 The community-identifiers attributes names the authorized communities
 by a list of community object identifiers, by a list of specific
 hardware modules, or by a combination of the two lists. A specific
 hardware module is specified by the combination of the hardware
 module identifier (as defined in Section 2.2.4) and a serial number.
 To facilitate compact representation of serial numbers, a contiguous
 block can be specified by the lowest authorized serial number and the
 highest authorized serial number. Alternatively, all of the serial
 numbers associated with a hardware module family identifier can be
 specified with the NULL value.

 If the bootstrap loader does not have a mechanism for obtaining a
 list of object identifiers that identify the communities to which the
 hardware module is a member, then the bootstrap loader MUST behave as
 though the list is empty. Similarly, if the bootstrap loader does
 not have access to the hardware module serial number, then the
 bootstrap loader MUST behave as though the hardware module is not
 included on the list of authorized hardware modules.

 The following object identifier identifies the community-identifiers
 attribute:

 id-aa-communityIdentifiers OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
 smime(16) aa(2) 40 }

 The community-identifiers attribute values have ASN.1 type
 CommunityIdentifiers:

 CommunityIdentifiers ::= SEQUENCE OF CommunityIdentifier

 CommunityIdentifier ::= CHOICE {
 communityOID OBJECT IDENTIFIER,
 hwModuleList HardwareModules }

 HardwareModules ::= SEQUENCE {
 hwType OBJECT IDENTIFIER,
 hwSerialEntries SEQUENCE OF HardwareSerialEntry }

 HardwareSerialEntry ::= CHOICE {
 all NULL,
 single OCTET STRING,
 block SEQUENCE {
 low OCTET STRING,
 high OCTET STRING } }

Housley Standards Track [Page 28]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

2.2.9. Firmware Package Information

 If a hardware module supports more than one type of firmware package,
 then the firmware package signer SHOULD include the firmware-
 package-info attribute with a populated fwPkgType field to identify
 the firmware package type. This value can aid the bootstrap loader
 in the correct placement of the firmware package within the hardware
 module. The firmware package type is an INTEGER, and the meaning of
 the integer value is specific to each hardware module. For example,
 a hardware module could assign different integer values for a
 bootstrap loader, a separation kernel, and an application.

 Some hardware module architectures permit one firmware package to use
 routines provided by another. If the firmware package contains a
 dependency on another, then the firmware package signer SHOULD also
 include the firmware-package-info attribute with a populated
 dependencies field. If the firmware package does not depend on any
 other firmware packages, then the firmware package signer MUST NOT
 include the firmware-package-info attribute with a populated
 dependencies field.

 Firmware package dependencies are identified by the firmware package
 identifier or by information contained in the firmware package
 itself, and in either case the bootstrap loader ensures that the
 dependencies are met. The bootstrap loader MUST reject a firmware
 package load if it identifies a dependency on a firmware package that
 is not already loaded. Also, the bootstrap loader MUST reject a
 firmware package load if the action will result in a configuration
 where the dependencies of an already loaded firmware package will no
 longer be satisfied. As described in Section 2.2.3, two approaches
 to naming firmware packages are supported: legacy and preferred.
 When the legacy firmware package name form is used, the dependency is
 indicated by a legacy firmware package name. We assume that the
 firmware package signer and the bootstrap loader can determine
 whether a given legacy firmware package name represents the named
 version of an acceptable newer version. When the preferred firmware
 package name form is used, an object identifier and an integer are
 provided. The object identifier MUST exactly match the object
 identifier portion of a preferred firmware package name associated
 with a firmware package that is already loaded, and the integer MUST
 be less than or equal to the integer portion of the preferred
 firmware package name associated with the same firmware package.
 That is, the dependency specifies the minimum value of the version
 that is acceptable.

Housley Standards Track [Page 29]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

 The following object identifier identifies the firmware-package-info
 attribute:

 id-aa-firmwarePackageInfo OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
 smime(16) aa(2) 42 }

 The firmware-package-info attribute values have ASN.1 type
 FirmwarePackageInfo:

 FirmwarePackageInfo ::= SEQUENCE {
 fwPkgType INTEGER OPTIONAL,
 dependencies SEQUENCE OF
 PreferredOrLegacyPackageIdentifier OPTIONAL }

2.2.10. Firmware Package Message Digest

 The firmware package signer SHOULD include a firmware-package-
 message-digest attribute, which provides the message digest algorithm
 and the message digest value computed on the firmware package. The
 message digest is computed on the firmware package prior to any
 compression, encryption, or signature processing. The bootstrap
 loader MAY use this message digest to confirm that the intended
 firmware package has been recovered after all of the layers of
 encapsulation are removed.

 The following object identifier identifies the firmware-package-
 message-digest attribute:

 id-aa-fwPkgMessageDigest OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
 smime(16) aa(2) 41 }

 The firmware-package-message-digest attribute values have ASN.1 type
 FirmwarePackageMessageDigest:

 FirmwarePackageMessageDigest ::= SEQUENCE {
 algorithm AlgorithmIdentifier,
 msgDigest OCTET STRING }

2.2.11. Signing Time

 The firmware package signer SHOULD include a signing-time attribute,
 specifying the time at which the signature was applied to the
 firmware package. Section 11.3 of [CMS] defines the signing-time
 attribute.

Housley Standards Track [Page 30]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

2.2.12. Content Hints

 The firmware package signer SHOULD include a content-hints attribute,
 including a brief text description of the firmware package. The text
 is encoded in UTF-8, which supports most of the world’s writing
 systems [UTF-8]. Section 2.9 of [ESS] defines the content-hints
 attribute.

 When multiple layers of encapsulation are employed, the content-hints
 attribute is included in the outermost SignedData to provide
 information about the innermost content. In this case, the content-
 hints attribute provides a brief text description of the firmware
 package, which can help a person select the correct firmware package
 when more than one is available.

 When the preferred firmware package name forms are used, the
 content-hints attribute can provide a linkage to a legacy firmware
 package name. This is especially helpful when an existing
 configuration management system is in use, but the features
 associated with the preferred firmware package name are deemed
 useful. A firmware package name associated with such a configuration
 management system might look something like
 "R1234.C0(AJ11).D62.A02.11(b)." Including these firmware package
 names in the text description may be helpful to developers by
 providing a clear linkage between the two name forms.

 The content-hints attribute contains two fields, and in this case,
 both fields MUST be present. The fields of ContentHints are used as
 follows:

 contentDescription provides a brief text description of the firmware
 package.

 contentType provides the content type of the inner most content type,
 and in this case, it MUST be id-ct-firmwarePackage
 (1.2.840.113549.1.9.16.1.16).

2.2.13. Signing Certificate

 When the firmware-signer’s public key is contained in a certificate,
 the firmware package signer SHOULD include a signing-certificate
 attribute to identify the certificate that was employed. However, if
 the firmware package signature does not have a certificate (meaning
 that the signature will only be validated with the trust anchor
 public key), then the firmware package signer is unable to include a
 signing-certificate attribute. Section 5.4 of [ESS] defines this
 attribute.

Housley Standards Track [Page 31]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

 The signing-certificate attribute contains two fields: certs and
 policies. The certs field MUST be present, and the policies field
 MAY be present. The fields of SigningCertificate are used as
 follows:

 certs contains a sequence of certificate identifiers. In this case,
 sequence of certificate identifiers contains a single entry. The
 certs field MUST contain only the certificate identifier of the
 certificate that contains the public key used to verify the
 firmware package signature. The certs field uses the ESSCertID
 syntax specified in Section 5.4 of [ESS], and it is comprised of
 the SHA-1 hash [SHA1] of the entire ASN.1 DER encoded certificate
 and, optionally, the certificate issuer and the certificate serial
 number. The SHA-1 hash value MUST be present. The certificate
 issuer and the certificate serial number SHOULD be present.

 policies is optional; when it is present, it contains a sequence of
 policy information. The policies field, when present, MUST
 contain only one entry, and that entry MUST match one of the
 certificate policies in the certificate policies extension of the
 certificate that contains the public key used to verify the
 firmware package signature. The policies field uses the
 PolicyInformation syntax specified in Section 4.2.1.5 of
 [PROFILE], and it is comprised of the certificate policy object
 identifier and, optionally, certificate policy qualifiers. The
 certificate policy object identifier MUST be present. The
 certificate policy qualifiers SHOULD NOT be present.

2.3. Unsigned Attributes

 CMS allows a SET of unsigned attributes to be included; however, in
 this specification, the set MUST be absent or include a single
 instance of the wrapped-firmware-decryption-key attribute. Because
 the digital signature does not cover this attribute, it can be
 altered at any point in the delivery path from the firmware package
 signer to the hardware module. This property can be employed to
 distribute the firmware-decryption key along with an encrypted and
 signed firmware package, allowing the firmware-decryption key to be
 wrapped with a different key-encryption key for each link in the
 distribution chain.

 The syntax for attributes is defined in [CMS], and it is repeated at
 the beginning of Section 2.2 of this document for convenience. Each
 of the attributes used with this profile has a single attribute
 value, even though the syntax is defined as a SET OF AttributeValue.
 There MUST be exactly one instance of AttributeValue present.

Housley Standards Track [Page 32]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

 The UnsignedAttributes syntax within signerInfo is defined as a SET
 OF Attribute. The UnsignedAttributes MUST include only one instance
 of any particular attribute.

2.3.1. Wrapped Firmware Decryption Key

 The firmware package signer, or any other party in the distribution
 chain, MAY include a wrapped-firmware-decryption-key attribute.

 The following object identifier identifies the wrapped-firmware-
 decryption-key attribute:

 id-aa-wrappedFirmwareKey OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
 smime(16) aa(2) 39 }

 The wrapped-firmware-decryption-key attribute values have ASN.1 type
 of EnvelopedData. Section 6 of [CMS] defines the EnvelopedData
 content type, which is used to construct the value of the attribute.
 EnvelopedData permits the firmware-decryption key to be protected
 using symmetric or asymmetric techniques. The EnvelopedData does not
 include an encrypted content; rather, the EnvelopedData feature of
 having the encrypted content in another location is employed. The
 encrypted content is found in the eContent field of the EncryptedData
 structure. The firmware-decryption key is contained in the
 recipientInfos field. Section 6 of [CMS] refers to this key as the
 content-encryption key.

 The EnvelopedData syntax supports many different key management
 algorithms. Four general techniques are supported: key transport,
 key agreement, symmetric key-encryption keys, and passwords.

 The EnvelopedData content type is profiled for the wrapped-firmware-
 decryption-key attribute. The EnvelopedData fields are described
 fully in Section 6 of [CMS]. Additional rules apply when
 EnvelopedData is used as a wrapped-firmware-decryption-key attribute.

 Within the EnvelopedData structure, the following apply:

 - The set of certificates included in OriginatorInfo MUST NOT
 include certificates with a type of extendedCertificate,
 v1AttrCert, or v2AttrCert [X.509-97, X.509-00, ACPROFILE]. The
 optional crls field MAY be present.

 - The optional unprotectedAttrs field MUST NOT be present.

Housley Standards Track [Page 33]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

 Within the EncryptedContentInfo structure, the following apply:

 - contentType MUST match the content type object identifier carried
 in the contentType field within the EncryptedContentInfo structure
 of EncryptedData as described in Section 2.1.3.1.

 - contentEncryptionAlgorithm identifies the firmware-encryption
 algorithm, and any associated parameters, used to encrypt the
 firmware package carried in the encryptedContent field of the
 EncryptedContentInfo structure of EncryptedData. Therefore, it
 MUST exactly match the value of the EncryptedContentInfo structure
 of EncryptedData as described in Section 2.1.3.1.

 - encryptedContent is optional, and in this case, it MUST NOT be
 present.

3. Firmware Package Load Receipt

 The Cryptographic Message Syntax (CMS) is used to indicate that a
 firmware package loaded successfully. Support for firmware package
 load receipts is OPTIONAL. However, those hardware modules that
 choose to generate such receipts MUST follow the conventions
 specified in this section. Because not all hardware modules will
 have private signature keys, the firmware package load receipt can be
 either signed or unsigned. Use of the signed firmware package load
 receipt is RECOMMENDED.

 Hardware modules that support receipt generation MUST have a unique
 serial number. Hardware modules that support signed receipt
 generation MUST have a private signature key to sign the receipt and
 the corresponding signature validation certificate or its designator.
 The designator is the certificate issuer name and the certificate
 serial number, or it is the public key identifier. Memory-
 constrained hardware modules will generally store the public key
 identifier since it requires less storage.

 The unsigned firmware package load receipt is encapsulated by
 ContentInfo. Alternatively, the signed firmware package load receipt
 is encapsulated by SignedData, which is in turn encapsulated by
 ContentInfo.

Housley Standards Track [Page 34]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

 The firmware package load receipt is summarized as follows (see [CMS]
 for the full syntax):

 ContentInfo {
 contentType id-signedData, -- (1.2.840.113549.1.7.2)
 -- OR --
 id-ct-firmwareLoadReceipt,
 -- (1.2.840.113549.1.9.16.1.17)
 content SignedData
 -- OR --
 FirmwarePackageLoadReceipt
 }

 SignedData {
 version CMSVersion, -- always set to 3
 digestAlgorithms DigestAlgorithmIdentifiers, -- Only one
 encapContentInfo EncapsulatedContentInfo,
 certificates CertificateSet, -- Optional Module certificate
 crls CertificateRevocationLists, -- Optional
 signerInfos SET OF SignerInfo -- Only one
 }

 SignerInfo {
 version CMSVersion, -- either set to 1 or 3
 sid SignerIdentifier,
 digestAlgorithm DigestAlgorithmIdentifier,
 signedAttrs SignedAttributes, -- Required
 signatureAlgorithm SignatureAlgorithmIdentifier,
 signature SignatureValue,
 unsignedAttrs UnsignedAttributes -- Omit
 }

 EncapsulatedContentInfo {
 eContentType id-ct-firmwareLoadReceipt,
 -- (1.2.840.113549.1.9.16.1.17)
 eContent OCTET STRING -- Contains receipt
 }

 FirmwarePackageLoadReceipt {
 version INTEGER, -- The DEFAULT is always used
 hwType OBJECT IDENTIFIER, -- Hardware module type
 hwSerialNum OCTET STRING, -- H/W module serial number
 fwPkgName PreferredOrLegacyPackageIdentifier,
 trustAnchorKeyID OCTET STRING, -- Optional
 decryptKeyID OCTET STRING -- Optional
 }

Housley Standards Track [Page 35]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

3.1. Firmware Package Load Receipt CMS Content Type Profile

 This section specifies the conventions for using the CMS ContentInfo
 and SignedData content types for firmware package load receipts. It
 also defines the firmware package load receipt content type.

3.1.1. ContentInfo

 The CMS requires that the outermost encapsulation be ContentInfo
 [CMS]. The fields of ContentInfo are used as follows:

 contentType indicates the type of the associated content. If the
 firmware package load receipt is signed, then the encapsulated
 type MUST be SignedData, and the id-signedData
 (1.2.840.113549.1.7.2) object identifier MUST be present in this
 field. If the receipt is not signed, then the encapsulated type
 MUST be FirmwarePackageLoadReceipt, and the id-ct-
 firmwareLoadReceipt (1.2.840.113549.1.9.16.1.17) object identifier
 MUST be present in this field.

 content holds the associated content. If the firmware package load
 receipt is signed, then this field MUST contain the SignedData.
 If the receipt is not signed, then this field MUST contain the
 FirmwarePackageLoadReceipt.

3.1.2. SignedData

 The SignedData content type contains the firmware package load
 receipt and one digital signature. If the hardware module locally
 stores its certificate, then the certificate can be included as well.
 The fields of SignedData are used as follows:

 version is the syntax version number, and in this case, it MUST be
 set to 3.

 digestAlgorithms is a collection of message digest algorithm
 identifiers, and in this case, it MUST contain a single message
 digest algorithm identifier. The message digest algorithms
 employed by the hardware module MUST be present.

 encapContentInfo is the signed content, consisting of a content type
 identifier and the content itself. The use of the
 EncapsulatedContentInfo type is discussed further in Section
 3.1.2.2.

 certificates is an optional collection of certificates. If the
 hardware module locally stores its certificate, then the X.509
 certificate of the hardware module SHOULD be included. If the

Housley Standards Track [Page 36]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

 hardware module does not, then the certificates field is omitted.
 PKCS#6 extended certificates [PKCS#6] and attribute certificates
 (either version 1 or version 2) [X.509-97, X.509-00, ACPROFILE]
 MUST NOT be included in the set of certificates.

 crls is an optional collection of certificate revocation lists
 (CRLs). CRLs MAY be included, but they will normally be omitted
 since hardware modules will not generally have access to the most
 recent CRL. Signed receipt recipients SHOULD be able to handle
 the presence of the optional crls field.

 signerInfos is a collection of per-signer information, and in this
 case, the collection MUST contain exactly one SignerInfo. The use
 of the SignerInfo type is discussed further in Section 3.1.2.1.

3.1.2.1. SignerInfo

 The hardware module is represented in the SignerInfo type. The
 fields of SignerInfo are used as follows:

 version is the syntax version number, and it MUST be either 1 or 3,
 depending on the method used to identify the hardware module’s
 public key. The use of the subjectKeyIdentifier is RECOMMENDED,
 which results in the use of version 3.

 sid specifies the hardware module’s certificate (and thereby the
 hardware module’s public key). CMS supports two alternatives:
 issuerAndSerialNumber and subjectKeyIdentifier. The hardware
 module MUST support one or both of the alternatives for receipt
 generation; however, the support of subjectKeyIdentifier is
 RECOMMENDED. The issuerAndSerialNumber alternative identifies the
 hardware module’s certificate by the issuer’s distinguished name
 and the certificate serial number. The identified certificate, in
 turn, contains the hardware module’s public key. The
 subjectKeyIdentifier alternative identifies the hardware module’s
 public key directly. When this public key is contained in a
 certificate, this identifier SHOULD appear in the X.509
 subjectKeyIdentifier extension.

 digestAlgorithm identifies the message digest algorithm, and any
 associated parameters, used by the hardware module. It MUST
 contain the message digest algorithms employed to sign the
 receipt. (Note that this message digest algorithm identifier MUST
 be the same as the one carried in the digestAlgorithms value in
 SignedData.)

Housley Standards Track [Page 37]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

 signedAttrs is an optional collection of attributes that are signed
 along with the content. The signedAttrs are optional in the CMS,
 but in this specification, signedAttrs are REQUIRED for use with
 the firmware package load receipt content. The SET OF attributes
 MUST be DER encoded [X.509-88]. Section 3.2 of this document
 lists the attributes that MUST be included in the collection.
 Other attributes MAY be included, but the recipient will ignore
 any unrecognized signed attributes.

 signatureAlgorithm identifies the signature algorithm, and any
 associated parameters, used to sign the receipt.

 signature is the digital signature.

 unsignedAttrs is an optional collection of attributes that are not
 signed, and in this case, there MUST NOT be any unsigned
 attributes present.

3.1.2.2. EncapsulatedContentInfo

 The FirmwarePackageLoadReceipt is encapsulated in an OCTET STRING,
 and it is carried within the EncapsulatedContentInfo type. The
 fields of EncapsulatedContentInfo are used as follows:

 eContentType is an object identifier that uniquely specifies the
 content type, and in this case, it MUST be the value of id-ct-
 firmwareLoadReceipt (1.2.840.113549.1.9.16.1.17).

 eContent is the firmware package load receipt, encapsulated in an
 OCTET STRING. The eContent octet string need not be DER encoded.

3.1.3. FirmwarePackageLoadReceipt

 The following object identifier identifies the firmware package load
 receipt content type:

 id-ct-firmwareLoadReceipt OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
 smime(16) ct(1) 17 }

Housley Standards Track [Page 38]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

 The firmware package load receipt content type has the ASN.1 type
 FirmwarePackageLoadReceipt:

 FirmwarePackageLoadReceipt ::= SEQUENCE {
 version FWReceiptVersion DEFAULT v1,
 hwType OBJECT IDENTIFIER,
 hwSerialNum OCTET STRING,
 fwPkgName PreferredOrLegacyPackageIdentifier,
 trustAnchorKeyID OCTET STRING OPTIONAL,
 decryptKeyID [1] OCTET STRING OPTIONAL }

 FWReceiptVersion ::= INTEGER { v1(1) }

 The fields of the FirmwarePackageLoadReceipt type have the following
 meanings:

 version is an integer that provides the syntax version number for
 compatibility with future revisions of this specification.
 Implementations that conform to this specification MUST set the
 version to the default value, which is v1.

 hwType is an object identifier that identifies the type of hardware
 module on which the firmware package was loaded.

 hwSerialNum is the serial number of the hardware module on which the
 firmware package was loaded. No particular structure is imposed
 on the serial number; it need not be an integer. However, the
 combination of the hwType and hwSerialNum uniquely identifies the
 hardware module.

 fwPkgName identifies the firmware package that was loaded. As
 described in Section 2.2.3, two approaches to naming firmware
 packages are supported: legacy and preferred. A legacy firmware
 package name is an octet string. A preferred firmware package
 name is a combination of the firmware package object identifier
 and an integer version number.

 trustAnchorKeyID is optional, and when it is present, it identifies
 the trust anchor that was used to validate the firmware package
 signature.

 decryptKeyID is optional, and when it is present, it identifies the
 firmware-decryption key that was used to decrypt the firmware
 package.

 The firmware package load receipt MUST include the version, hwType,
 hwSerialNum, and fwPkgName fields, and it SHOULD include the
 trustAnchorKeyID field. The firmware package load receipt MUST NOT

Housley Standards Track [Page 39]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

 include the decryptKeyID, unless the firmware package associated with
 the receipt is encrypted, the firmware-decryption key is available to
 the hardware module, and the firmware package was successfully
 decrypted.

3.2. Signed Attributes

 The hardware module MUST digitally sign a collection of attributes
 along with the firmware package load receipt. Each attribute in the
 collection MUST be DER encoded [X.509-88]. The syntax for attributes
 is defined in [CMS], and it was repeated in Section 2.2 for
 convenience.

 Each of the attributes used with this profile has a single attribute
 value, even though the syntax is defined as a SET OF AttributeValue.
 There MUST be exactly one instance of AttributeValue present.

 The SignedAttributes syntax within signerInfo is defined as a SET OF
 Attributes. The SignedAttributes MUST include only one instance of
 any particular attribute.

 The hardware module MUST include the content-type and message-digest
 attributes. If the hardware module includes a real-time clock, then
 the hardware module SHOULD also include the signing-time attribute.
 The hardware module MAY include any other attribute that it deems
 appropriate.

3.2.1. Content Type

 The hardware module MUST include a content-type attribute with the
 value of id-ct-firmwareLoadReceipt (1.2.840.113549.1.9.16.1.17).
 Section 11.1 of [CMS] defines the content-type attribute.

3.2.2. Message Digest

 The hardware module MUST include a message-digest attribute, having
 as its value the message digest of the FirmwarePackageLoadReceipt
 content. Section 11.2 of [CMS] defines the message-digest attribute.

3.2.3. Signing Time

 If the hardware module includes a real-time clock, then the hardware
 module SHOULD include a signing-time attribute, specifying the time
 at which the receipt was generated. Section 11.3 of [CMS] defines
 the signing-time attribute.

Housley Standards Track [Page 40]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

4. Firmware Package Load Error

 The Cryptographic Message Syntax (CMS) is used to indicate that an
 error has occurred while attempting to load a protected firmware
 package. Support for firmware package load error reports is
 OPTIONAL. However, those hardware modules that choose to generate
 such error reports MUST follow the conventions specified in this
 section. Not all hardware modules have private signature keys;
 therefore the firmware package load error report can be either signed
 or unsigned. Use of the signed firmware package error report is
 RECOMMENDED.

 Hardware modules that support error report generation MUST have a
 unique serial number. Hardware modules that support signed error
 report generation MUST also have a private signature key to sign the
 error report and the corresponding signature validation certificate
 or its designator. The designator is the certificate issuer name and
 the certificate serial number, or it is the public key identifier.
 Memory-constrained hardware modules will generally store the public
 key identifier since it requires less storage.

 The unsigned firmware package load error report is encapsulated by
 ContentInfo. Alternatively, the signed firmware package load error
 report is encapsulated by SignedData, which is in turn encapsulated
 by ContentInfo.

 The firmware package load error report is summarized as follows (see
 [CMS] for the full syntax):

 ContentInfo {
 contentType id-signedData, -- (1.2.840.113549.1.7.2)
 -- OR --
 id-ct-firmwareLoadError,
 -- (1.2.840.113549.1.9.16.1.18)
 content SignedData
 -- OR --
 FirmwarePackageLoadError
 }

 SignedData {
 version CMSVersion, -- Always set to 3
 digestAlgorithms DigestAlgorithmIdentifiers, -- Only one
 encapContentInfo EncapsulatedContentInfo,
 certificates CertificateSet, -- Optional Module certificate
 crls CertificateRevocationLists, -- Optional
 signerInfos SET OF SignerInfo -- Only one
 }

Housley Standards Track [Page 41]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

 SignerInfo {
 version CMSVersion, -- either set to 1 or 3
 sid SignerIdentifier,
 digestAlgorithm DigestAlgorithmIdentifier,
 signedAttrs SignedAttributes, -- Required
 signatureAlgorithm SignatureAlgorithmIdentifier,
 signature SignatureValue,
 unsignedAttrs UnsignedAttributes -- Omit
 }

 EncapsulatedContentInfo {
 eContentType id-ct-firmwareLoadError,
 -- (1.2.840.113549.1.9.16.1.18)
 eContent OCTET STRING -- Contains error report
 }

 FirmwarePackageLoadError {
 version INTEGER, -- The DEFAULT is always used
 hwType OBJECT IDENTIFIER, -- Hardware module type
 hwSerialNum OCTET STRING, -- H/W module serial number
 errorCode FirmwarePackageLoadErrorCode -- Error identifier
 vendorErrorCode VendorErrorCode, -- Optional
 fwPkgName PreferredOrLegacyPackageIdentifier, -- Optional
 config SEQUENCE OF CurrentFWConfig, -- Optional
 }

 CurrentFWConfig { -- Repeated for each package in configuration
 fwPkgType INTEGER, -- Firmware package type; Optional
 fwPkgName PreferredOrLegacyPackageIdentifier
 }

4.1. Firmware Package Load Error CMS Content Type Profile

 This section specifies the conventions for using the CMS ContentInfo
 and SignedData content types for firmware package load error reports.
 It also defines the firmware package load error content type.

4.1.1. ContentInfo

 The CMS requires that the outermost encapsulation be ContentInfo
 [CMS]. The fields of ContentInfo are used as follows:

 contentType indicates the type of the associated content. If the
 firmware package load error report is signed, then the
 encapsulated type MUST be SignedData, and the id-signedData
 (1.2.840.113549.1.7.2) object identifier MUST be present in this
 field. If the report is not signed, then the encapsulated type

Housley Standards Track [Page 42]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

 MUST be FirmwarePackageLoadError, and the id-ct-firmwareLoadError
 (1.2.840.113549.1.9.16.1.18) object identifier MUST be present in
 this field.

 content holds the associated content. If the firmware package load
 error report is signed, then this field MUST contain the
 SignedData. If the report is not signed, then this field MUST
 contain the FirmwarePackageLoadError.

4.1.2. SignedData

 The SignedData content type contains the firmware package load error
 report and one digital signature. If the hardware module locally
 stores its certificate, then the certificate can be included as well.
 The fields of SignedData are used exactly as described in Section
 3.1.2.

4.1.2.1. SignerInfo

 The hardware module is represented in the SignerInfo type. The
 fields of SignerInfo are used exactly as described in Section
 3.1.2.1.

4.1.2.2. EncapsulatedContentInfo

 The FirmwarePackageLoadError is encapsulated in an OCTET STRING, and
 it is carried within the EncapsulatedContentInfo type. The fields of
 EncapsulatedContentInfo are used as follows:

 eContentType is an object identifier that uniquely specifies the
 content type, and in this case, it MUST be the value of id-ct-
 firmwareLoadError (1.2.840.113549.1.9.16.1.18).

 eContent is the firmware package load error report, encapsulated in
 an OCTET STRING. The eContent octet string need not be DER
 encoded.

4.1.3. FirmwarePackageLoadError

 The following object identifier identifies the firmware package load
 error report content type:

 id-ct-firmwareLoadError OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
 smime(16) ct(1) 18 }

Housley Standards Track [Page 43]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

 The firmware package load error report content type has the ASN.1
 type FirmwarePackageLoadError:

 FirmwarePackageLoadError ::= SEQUENCE {
 version FWErrorVersion DEFAULT v1,
 hwType OBJECT IDENTIFIER,
 hwSerialNum OCTET STRING,
 errorCode FirmwarePackageLoadErrorCode,
 vendorErrorCode VendorLoadErrorCode OPTIONAL,
 fwPkgName PreferredOrLegacyPackageIdentifier OPTIONAL,
 config [1] SEQUENCE OF CurrentFWConfig OPTIONAL }

 FWErrorVersion ::= INTEGER { v1(1) }

 CurrentFWConfig ::= SEQUENCE {
 fwPkgType INTEGER OPTIONAL,
 fwPkgName PreferredOrLegacyPackageIdentifier }

 FirmwarePackageLoadErrorCode ::= ENUMERATED {
 decodeFailure (1),
 badContentInfo (2),
 badSignedData (3),
 badEncapContent (4),
 badCertificate (5),
 badSignerInfo (6),
 badSignedAttrs (7),
 badUnsignedAttrs (8),
 missingContent (9),
 noTrustAnchor (10),
 notAuthorized (11),
 badDigestAlgorithm (12),
 badSignatureAlgorithm (13),
 unsupportedKeySize (14),
 signatureFailure (15),
 contentTypeMismatch (16),
 badEncryptedData (17),
 unprotectedAttrsPresent (18),
 badEncryptContent (19),
 badEncryptAlgorithm (20),
 missingCiphertext (21),
 noDecryptKey (22),
 decryptFailure (23),
 badCompressAlgorithm (24),
 missingCompressedContent (25),
 decompressFailure (26),
 wrongHardware (27),
 stalePackage (28),
 notInCommunity (29),

Housley Standards Track [Page 44]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

 unsupportedPackageType (30),
 missingDependency (31),
 wrongDependencyVersion (32),
 insufficientMemory (33),
 badFirmware (34),
 unsupportedParameters (35),
 breaksDependency (36),
 otherError (99) }

 VendorLoadErrorCode ::= INTEGER

 The fields of the FirmwarePackageLoadError type have the following
 meanings:

 version is an integer, and it provides the syntax version number for
 compatibility with future revisions of this specification.
 Implementations that conform to this specification MUST set the
 version to the default value, which is v1.

 hwType is an object identifier that identifies the type of hardware
 module on which the firmware package load was attempted.

 hwSerialNum is the serial number of the hardware module on which the
 firmware package load was attempted. No particular structure is
 imposed on the serial number; it need not be an integer. However,
 the combination of the hwType and hwSerialNum uniquely identifies
 the hardware module.

 errorCode identifies the error that occurred.

 vendorErrorCode is optional; however, it MUST be present if the
 errorCode contains a value of otherError. When errorCode contains
 a value other than otherError, the vendorErrorCode can provide
 vendor-specific supplemental information.

 fwPkgName is optional. When it is present, it identifies the
 firmware package that was being loaded when the error occurred.
 As described in Section 2.2.3, two approaches to naming firmware
 packages are supported: legacy and preferred. A legacy firmware
 package name is an octet string. A preferred firmware package
 name is a combination of the firmware package object identifier
 and an integer version number.

 config identifies the current firmware configuration. The field is
 OPTIONAL, but support for this field is RECOMMENDED for hardware
 modules that permit the loading of more than one firmware package.
 One instance of CurrentFWConfig is used to provide information
 about each firmware package in hardware module.

Housley Standards Track [Page 45]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

 The fields of the CurrentFWConfig type have the following meanings:

 fwPkgType identifies the firmware package type. The firmware package
 type is an INTEGER, and the meaning of the integer value is
 specific to each hardware module.

 fwPkgName identifies the firmware package. As described in Section
 2.2.3, two approaches to naming firmware packages are supported:
 legacy and preferred. A legacy firmware package name is an octet
 string. A preferred firmware package name is a combination of the
 firmware package object identifier and an integer version number.

 The errorCode values have the following meanings:

 decodeFailure: The ASN.1 decode of the firmware package load failed.
 The provided input did not conform to BER, or it was not ASN.1 at
 all.

 badContentInfo: Invalid ContentInfo syntax, or the contentType
 carried within the ContentInfo is unknown or unsupported.

 badSignedData: Invalid SignedData syntax, the version is unknown or
 unsupported, or more than one entry is present in
 digestAlgorithms.

 badEncapContent: Invalid EncapsulatedContentInfo syntax, or the
 contentType carried within the eContentType is unknown or
 unsupported. This error can be generated due to problems located
 in SignedData or CompressedData.

 badCertificate: Invalid syntax for one or more certificates in
 CertificateSet.

 badSignerInfo: Invalid SignerInfo syntax, or the version is unknown
 or unsupported.

 badSignedAttrs: Invalid signedAttrs syntax within SignerInfo.

 badUnsignedAttrs: The unsignedAttrs within SignerInfo contains an
 attribute other than the wrapped-firmware-decryption-key
 attribute, which is the only unsigned attribute supported by this
 specification.

 missingContent: The optional eContent is missing in
 EncapsulatedContentInfo, which is required in this specification.
 This error can be generated due to problems located in SignedData
 or CompressedData.

Housley Standards Track [Page 46]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

 noTrustAnchor: Two situations can lead to this error. In one case,
 the subjectKeyIdentifier does not identify the public key of a
 trust anchor or a certification path that terminates with an
 installed trust anchor. In the other case, the
 issuerAndSerialNumber does not identify the public key of a trust
 anchor or a certification path that terminates with an installed
 trust anchor.

 notAuthorized: The sid within SignerInfo leads to an installed trust
 anchor, but that trust anchor is not an authorized firmware
 package signer.

 badDigestAlgorithm: The digestAlgorithm in either SignerInfo or
 SignedData is unknown or unsupported.

 badSignatureAlgorithm: The signatureAlgorithm in SignerInfo is
 unknown or unsupported.

 unsupportedKeySize: The signatureAlgorithm in SignerInfo is known and
 supported, but the firmware package signature could not be
 validated because an unsupported key size was employed by the
 signer.

 signatureFailure: The signatureAlgorithm in SignerInfo is known and
 supported, but the signature in signature in SignerInfo could not
 be validated.

 contentTypeMismatch: The contentType carried within the eContentType
 does not match the content type carried in the signed attribute.

 badEncryptedData: Invalid EncryptedData syntax; the version is
 unknown or unsupported.

 unprotectedAttrsPresent: EncryptedData contains unprotectedAttrs,
 which are not permitted in this specification.

 badEncryptContent: Invalid EncryptedContentInfo syntax, or the
 contentType carried within the contentType is unknown or
 unsupported.

 badEncryptAlgorithm: The firmware-encryption algorithm identified by
 contentEncryptionAlgorithm in EncryptedContentInfo is unknown or
 unsupported.

 missingCiphertext: The optional encryptedContent is missing in
 EncryptedContentInfo, which is required in this specification.

Housley Standards Track [Page 47]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

 noDecryptKey: The hardware module does not have the firmware-
 decryption key named in the decrypt key identifier signed
 attribute.

 decryptFailure: The firmware package did not decrypt properly.

 badCompressAlgorithm: The compression algorithm identified by
 compressionAlgorithm in CompressedData is unknown or unsupported.

 missingCompressedContent: The optional eContent is missing in
 EncapsulatedContentInfo, which is required in this specification.

 decompressFailure: The firmware package did not decompress properly.

 wrongHardware: The processing hardware module is not listed in the
 target hardware module identifiers signed attribute.

 stalePackage: The firmware package is rejected because it is stale.

 notInCommunity: The hardware module is not a member of the community
 described in the community identifiers signed attribute.

 unsupportedPackageType: The firmware package type identified in the
 firmware package information signed attribute is not supported by
 the combination of the hardware module and the bootstrap loader.

 missingDependency: The firmware package being loaded depends on
 routines that are part of another firmware package, but that
 firmware package is not available.

 wrongDependencyVersion: The firmware package being loaded depends on
 routines that are part of the another firmware package, and the
 available version of that package has an older version number than
 is required. The available firmware package does not fulfill the
 dependencies.

 insufficientMemory: The firmware package could not be loaded because
 the hardware module did not have sufficient memory.

 badFirmware: The signature on the firmware package was validated, but
 the firmware package itself was not in an acceptable format. The
 details will be specific to each hardware module. For example, a
 hardware module that is composed of multiple firmware-programmable
 components could not find the internal tagging within the firmware
 package to distribute executable code to each of the components.

Housley Standards Track [Page 48]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

 unsupportedParameters: The signature on the firmware package could
 not be validated because the signer used signature algorithm
 parameters that are not supported by the hardware module signature
 verification routines.

 breaksDependency: Another firmware package has a dependency that can
 no longer be satisfied if the firmware package being loaded is
 accepted.

 otherError: An error occurred that does not fit any of the previous
 error codes.

4.2. Signed Attributes

 The hardware module MUST digitally sign a collection of attributes
 along with the firmware package load error report. Each attribute in
 the collection MUST be DER encoded [X.509-88]. The syntax for
 attributes is defined in [CMS], and it was repeated in Section 2.2
 for convenience.

 Each of the attributes used with this profile has a single attribute
 value, even though the syntax is defined as a SET OF AttributeValue.
 There MUST be exactly one instance of AttributeValue present.

 The SignedAttributes syntax within signerInfo is defined as a SET OF
 Attributes. The SignedAttributes MUST include only one instance of
 any particular attribute.

 The hardware module MUST include the content-type and message-digest
 attributes. If the hardware module includes a real-time clock, then
 the hardware module SHOULD also include the signing-time attribute.
 The hardware module MAY include any other attribute that it deems
 appropriate.

4.2.1. Content Type

 The hardware module MUST include a content-type attribute with the
 value of id-ct-firmwareLoadError (1.2.840.113549.1.9.16.1.18).
 Section 11.1 of [CMS] defines the content-type attribute.

4.2.2. Message Digest

 The hardware module MUST include a message-digest attribute, having
 as its value the message digest of the FirmwarePackageLoadError
 content. Section 11.2 of [CMS] defines the message-digest attribute.

Housley Standards Track [Page 49]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

4.2.3. Signing Time

 If the hardware module includes a real-time clock, then hardware
 module SHOULD include a signing-time attribute, specifying the time
 at which the firmware package load error report was generated.
 Section 11.3 of [CMS] defines the signing-time attribute.

5. Hardware Module Name

 Support for firmware package load receipts, as discussed in Section
 3, is OPTIONAL, and support for the firmware package load error
 reports, as discussed in Section 4, is OPTIONAL. Hardware modules
 that support receipt or error report generation MUST have unique
 serial numbers. Further, hardware modules that support signed
 receipt or error report generation MUST have private signature keys
 and corresponding signature validation certificates [PROFILE] or
 their designators. The conventions for hardware module naming in the
 signature validation certificates are specified in this section.

 The hardware module vendor or a trusted third party MUST issue the
 signature validation certificate prior to deployment of the hardware
 module. The certificate is likely to be issued at the time of
 manufacture. The subject alternative name in this certificate
 identifies the hardware module. The subject distinguished name is
 empty, but a critical subject alternative name extension contains the
 hardware module name, using the otherName choice within the
 GeneralName structure.

 The hardware module name form is identified by the id-on-
 hardwareModuleName object identifier:

 id-on-hardwareModuleName OBJECT IDENTIFIER ::= {
 iso(1) identified-organization(3) dod(6) internet(1) security(5)
 mechanisms(5) pkix(7) on(8) 4 }

 A HardwareModuleName is composed of an object identifier and an octet
 string:

 HardwareModuleName ::= SEQUENCE {
 hwType OBJECT IDENTIFIER,
 hwSerialNum OCTET STRING }

 The fields of the HardwareModuleName type have the following
 meanings:

 hwType is an object identifier that identifies the type of hardware
 module. A unique object identifier names a hardware model and
 revision.

Housley Standards Track [Page 50]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

 hwSerialNum is the serial number of the hardware module. No
 particular structure is imposed on the serial number; it need not
 be an integer. However, the combination of the hwType and
 hwSerialNum uniquely identifies the hardware module.

6. Security Considerations

 This document describes the use of the Cryptographic Message Syntax
 (CMS) to protect firmware packages; therefore, the security
 considerations discussed in [CMS] apply to this specification as
 well.

 The conventions specified in this document raise a few security
 considerations of their own.

6.1. Cryptographic Keys and Algorithms

 Private signature keys must be protected. Compromise of the private
 key used to sign firmware packages permits unauthorized parties to
 generate firmware packages that are acceptable to hardware modules.
 Compromise of the hardware module private key allows unauthorized
 parties to generate signed firmware package load receipts and error
 reports.

 The firmware-decryption key must be protected. Compromise of the key
 may result in the disclosure of the firmware package to unauthorized
 parties.

 Cryptographic algorithms become weaker with time. As new
 cryptanalysis techniques are developed and computing performance
 improves, the work factor to break a particular cryptographic
 algorithm will be reduced. The ability to change the firmware
 package provides an opportunity to update or replace cryptographic
 algorithms. Although this capability is desirable, cryptographic
 algorithm replacement can lead to interoperability failures.
 Therefore, the rollout of new cryptographic algorithms must be
 managed. Generally, the previous generation of cryptographic
 algorithms and their replacements need to be supported at the same
 time in order to facilitate an orderly transition.

6.2. Random Number Generation

 When firmware packages are encrypted, the source of the firmware
 package must randomly generate firmware-encryption keys. Also, the
 generation of public/private signature key pairs relies on a random
 numbers. The use of inadequate pseudo-random number generators
 (PRNGs) to generate cryptographic keys can result in little or no
 security. An attacker may find it much easier to reproduce the PRNG

Housley Standards Track [Page 51]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

 environment that produced the keys, searching the resulting small set
 of possibilities, rather than brute-force searching the whole key
 space. The generation of quality random numbers is difficult. RFC
 4086 [RANDOM] offers important guidance in this area.

6.3. Stale Firmware Package Version Number

 The firmware signer determines whether a stale version number is
 included. The policy of the firmware signer needs to consider many
 factors. Consider the flaw found by Ian Goldberg and David Wagner in
 the random number generator of the Netscape browser in 1996 [DDJ].
 This flaw completely undermines confidentiality protection. A
 firmware signer might use the stale version number to ensure that
 upgraded hardware modules do not resume use of the flawed firmware.
 However, another firmware signer may not consider this an appropriate
 situation to employ the stale version number, preferring to delegate
 this decision to someone closer to the operation of the hardware
 module. Such a person is likely to be in a better position to
 evaluate whether other bugs introduced in the newer firmware package
 impose worse operational concerns than the confidentiality concern
 caused by the flawed random number generator. For example, a user
 who never uses the encryption feature of the flawed Netscape browser
 will determine the most appropriate version to use without
 considering the random number flaw or its fix.

 The stale version number is especially useful when the security
 interests of the person choosing which firmware package version to
 load into a particular hardware module do not align with the security
 interests of the firmware package signer. For example, stale version
 numbers may be useful in hardware modules that provide digital rights
 management (DRM). Also, stale version numbers will be useful when
 the deployment organization (as opposed to the firmware package
 vendor) is the firmware signer. Further, stale version numbers will
 be useful for firmware packages that need to be trusted to implement
 organizational (as opposed to the deployment organization) security
 policy, regardless of whether the firmware signer is the deployment
 organization or the vendor. For example, hardware devices employed
 by the military will probably make use of stale version numbers.

 The use of a stale version number in a firmware package that employs
 the preferred firmware package name form cannot completely prevent
 subsequent use of the stale firmware package. Despite this
 shortcoming, the feature is included since it is useful in some
 important situations. By loading different types of firmware
 packages, each with its own stale firmware package version number
 until the internal storage for the stale version number is exceeded,
 the user can circumvent the mechanism. Consider a hardware module

Housley Standards Track [Page 52]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

 that has storage for two stale version numbers. Suppose that FWPKG-A
 version 3 is loaded, indicating that FWPKG-A version 2 is stale. The
 user can sequentially load the following:

 - FWPKG-B version 8, indicating that FWPKG-B version 4 is stale.
 (Note: The internal storage indicates that FWPKG-A version 2
 and FWPKG-B version 4 are stale.)

 - FWPKG-C version 5, indicating that FWPKG-C version 3 is stale.
 (Note: The internal storage indicates that FWPKG-B version 4
 and FWPKG-C version 3 are stale.)

 - FWPKG-A version 2.

 Because many hardware modules are expected to have very few firmware
 packages written for them, the stale firmware package version feature
 provides important protections. The amount of non-volatile storage
 that needs to be dedicated to saving firmware package identifiers and
 version numbers depends on the number of firmware packages that are
 likely to be developed for the hardware module.

 The use of legacy firmware package name form does not improve this
 situation. In fact, the legacy firmware package names are usually
 larger than an object identifier. Thus, comparable stale version
 protection requires more memory.

 A firmware signer can ensure that stale version numbers are honored
 by limiting the number of different types of firmware packages that
 are signed. If all of the hardware modules are able to store a stale
 version number for each of the different types of firmware package,
 then the hardware module will be able to provide the desired
 protection. This requires the firmware signer to have a deep
 understanding of all of the hardware modules that might accept the
 firmware package.

6.4. Community Identifiers

 When a firmware package includes a community identifier, the
 confidence that the package is only used by the intended community
 depends on the mechanism used to configure community membership.
 This document does not specify a mechanism for the assignment of
 community membership to hardware modules, and the various
 alternatives have different security properties. Also, the authority
 that makes community identifier assignments to hardware modules might
 be different than the authority that generates firmware packages.

Housley Standards Track [Page 53]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

7. References

7.1. Normative References

 [COMPRESS] Gutmann, P., "Compressed Data Content Type for
 Cryptographic Message Syntax (CMS)", RFC 3274, June
 2002.

 [CMS] Housley, R., "Cryptographic Message Syntax (CMS)", RFC
 3852, July 2004.

 [ESS] Hoffman, P., "Enhanced Security Services for S/MIME",
 RFC 2634, June 1999.

 [PROFILE] Housley, R., Polk, W., Ford, W., and D. Solo, "Internet
 X.509 Public Key Infrastructure Certificate and
 Certificate Revocation List (CRL) Profile", RFC 3280,
 April 2002.

 [SHA1] National Institute of Standards and Technology. FIPS
 Pub 180-1: Secure Hash Standard. 17 April 1995.

 [STDWORDS] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [UTF-8] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

 [X.208-88] CCITT. Recommendation X.208: Specification of Abstract
 Syntax Notation One (ASN.1). 1988.

 [X.209-88] CCITT. Recommendation X.209: Specification of Basic
 Encoding Rules for Abstract Syntax Notation One (ASN.1).
 1988.

 [X.509-88] CCITT. Recommendation X.509: The Directory -
 Authentication Framework. 1988.

7.2. Informative References

 [ACPROFILE] Farrell, S. and R. Housley, "An Internet Attribute
 Certificate Profile for Authorization", RFC 3281, April
 2002.

 [AES] National Institute of Standards and Technology. FIPS
 Pub 197: Advanced Encryption Standard (AES). 26
 November 2001.

Housley Standards Track [Page 54]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

 [DDJ] Goldberg, I. and D. Wagner. "Randomness and the
 Netscape Browser." Dr. Dobb’s Journal, January 1996.

 [DPD&DPV] Pinkas, D. and R. Housley, "Delegated Path Validation
 and Delegated Path Discovery Protocol Requirements", RFC
 3379, September 2002.

 [OCSP] Myers, M., Ankney, R., Malpani, A., Galperin, S., and C.
 Adams, "X.509 Internet Public Key Infrastructure Online
 Certificate Status Protocol - OCSP", RFC 2560, June
 1999.

 [PKCS#6] RSA Laboratories. PKCS #6: Extended-Certificate Syntax
 Standard, Version 1.5. November 1993.

 [RANDOM] Eastlake, D., 3rd, Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106, RFC
 4086, June 2005.

 [SECREQMTS] National Institute of Standards and Technology. FIPS
 Pub 140-2: Security Requirements for Cryptographic
 Modules. 25 May 2001.

 [X.509-97] ITU-T. Recommendation X.509: The Directory -
 Authentication Framework. 1997.

 [X.509-00] ITU-T. Recommendation X.509: The Directory -
 Authentication Framework. 2000.

Housley Standards Track [Page 55]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

Appendix A: ASN.1 Module

 The ASN.1 module contained in this appendix defines the structures
 that are needed to implement the CMS-based firmware package wrapper.
 It is expected to be used in conjunction with the ASN.1 modules in
 [CMS], [COMPRESS], and [PROFILE].

 CMSFirmwareWrapper
 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
 pkcs-9(9) smime(16) modules(0) cms-firmware-wrap(22) }

 DEFINITIONS IMPLICIT TAGS ::= BEGIN

 IMPORTS
 EnvelopedData
 FROM CryptographicMessageSyntax -- [CMS]
 { iso(1) member-body(2) us(840) rsadsi(113549)
 pkcs(1) pkcs-9(9) smime(16) modules(0) cms-2004(24) };

 -- Firmware Package Content Type and Object Identifier

 id-ct-firmwarePackage OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
 smime(16) ct(1) 16 }

 FirmwarePkgData ::= OCTET STRING

 -- Firmware Package Signed Attributes and Object Identifiers

 id-aa-firmwarePackageID OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
 smime(16) aa(2) 35 }

 FirmwarePackageIdentifier ::= SEQUENCE {
 name PreferredOrLegacyPackageIdentifier,
 stale PreferredOrLegacyStalePackageIdentifier OPTIONAL }

 PreferredOrLegacyPackageIdentifier ::= CHOICE {
 preferred PreferredPackageIdentifier,
 legacy OCTET STRING }

 PreferredPackageIdentifier ::= SEQUENCE {
 fwPkgID OBJECT IDENTIFIER,
 verNum INTEGER (0..MAX) }

Housley Standards Track [Page 56]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

 PreferredOrLegacyStalePackageIdentifier ::= CHOICE {
 preferredStaleVerNum INTEGER (0..MAX),
 legacyStaleVersion OCTET STRING }

 id-aa-targetHardwareIDs OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
 smime(16) aa(2) 36 }

 TargetHardwareIdentifiers ::= SEQUENCE OF OBJECT IDENTIFIER

 id-aa-decryptKeyID OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
 smime(16) aa(2) 37 }

 DecryptKeyIdentifier ::= OCTET STRING

 id-aa-implCryptoAlgs OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
 smime(16) aa(2) 38 }

 ImplementedCryptoAlgorithms ::= SEQUENCE OF OBJECT IDENTIFIER

 id-aa-implCompressAlgs OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
 smime(16) aa(2) 43 }

 ImplementedCompressAlgorithms ::= SEQUENCE OF OBJECT IDENTIFIER

 id-aa-communityIdentifiers OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
 smime(16) aa(2) 40 }

 CommunityIdentifiers ::= SEQUENCE OF CommunityIdentifier

 CommunityIdentifier ::= CHOICE {
 communityOID OBJECT IDENTIFIER,
 hwModuleList HardwareModules }

 HardwareModules ::= SEQUENCE {
 hwType OBJECT IDENTIFIER,
 hwSerialEntries SEQUENCE OF HardwareSerialEntry }

Housley Standards Track [Page 57]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

 HardwareSerialEntry ::= CHOICE {
 all NULL,
 single OCTET STRING,
 block SEQUENCE {
 low OCTET STRING,
 high OCTET STRING } }

 id-aa-firmwarePackageInfo OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
 smime(16) aa(2) 42 }

 FirmwarePackageInfo ::= SEQUENCE {
 fwPkgType INTEGER OPTIONAL,
 dependencies SEQUENCE OF
 PreferredOrLegacyPackageIdentifier OPTIONAL }

 -- Firmware Package Unsigned Attributes and Object Identifiers

 id-aa-wrappedFirmwareKey OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
 smime(16) aa(2) 39 }

 WrappedFirmwareKey ::= EnvelopedData

 -- Firmware Package Load Receipt Content Type and Object Identifier

 id-ct-firmwareLoadReceipt OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
 smime(16) ct(1) 17 }

 FirmwarePackageLoadReceipt ::= SEQUENCE {
 version FWReceiptVersion DEFAULT v1,
 hwType OBJECT IDENTIFIER,
 hwSerialNum OCTET STRING,
 fwPkgName PreferredOrLegacyPackageIdentifier,
 trustAnchorKeyID OCTET STRING OPTIONAL,
 decryptKeyID [1] OCTET STRING OPTIONAL }

 FWReceiptVersion ::= INTEGER { v1(1) }

Housley Standards Track [Page 58]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

 -- Firmware Package Load Error Report Content Type
 -- and Object Identifier

 id-ct-firmwareLoadError OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
 smime(16) ct(1) 18 }

 FirmwarePackageLoadError ::= SEQUENCE {
 version FWErrorVersion DEFAULT v1,
 hwType OBJECT IDENTIFIER,
 hwSerialNum OCTET STRING,
 errorCode FirmwarePackageLoadErrorCode,
 vendorErrorCode VendorLoadErrorCode OPTIONAL,
 fwPkgName PreferredOrLegacyPackageIdentifier OPTIONAL,
 config [1] SEQUENCE OF CurrentFWConfig OPTIONAL }

 FWErrorVersion ::= INTEGER { v1(1) }

 CurrentFWConfig ::= SEQUENCE {
 fwPkgType INTEGER OPTIONAL,
 fwPkgName PreferredOrLegacyPackageIdentifier }

 FirmwarePackageLoadErrorCode ::= ENUMERATED {
 decodeFailure (1),
 badContentInfo (2),
 badSignedData (3),
 badEncapContent (4),
 badCertificate (5),
 badSignerInfo (6),
 badSignedAttrs (7),
 badUnsignedAttrs (8),
 missingContent (9),
 noTrustAnchor (10),
 notAuthorized (11),
 badDigestAlgorithm (12),
 badSignatureAlgorithm (13),
 unsupportedKeySize (14),
 signatureFailure (15),
 contentTypeMismatch (16),
 badEncryptedData (17),
 unprotectedAttrsPresent (18),
 badEncryptContent (19),
 badEncryptAlgorithm (20),
 missingCiphertext (21),
 noDecryptKey (22),
 decryptFailure (23),
 badCompressAlgorithm (24),
 missingCompressedContent (25),

Housley Standards Track [Page 59]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

 decompressFailure (26),
 wrongHardware (27),
 stalePackage (28),
 notInCommunity (29),
 unsupportedPackageType (30),
 missingDependency (31),
 wrongDependencyVersion (32),
 insufficientMemory (33),
 badFirmware (34),
 unsupportedParameters (35),
 breaksDependency (36),
 otherError (99) }

 VendorLoadErrorCode ::= INTEGER

 -- Other Name syntax for Hardware Module Name

 id-on-hardwareModuleName OBJECT IDENTIFIER ::= {
 iso(1) identified-organization(3) dod(6) internet(1) security(5)
 mechanisms(5) pkix(7) on(8) 4 }

 HardwareModuleName ::= SEQUENCE {
 hwType OBJECT IDENTIFIER,
 hwSerialNum OCTET STRING }

 END

Author’s Address

 Russell Housley
 Vigil Security, LLC
 918 Spring Knoll Drive
 Herndon, VA 20170
 USA

 EMail: housley@vigilsec.com

Housley Standards Track [Page 60]

RFC 4108 Using CMS to Protect Firmware Packages August 2005

Full Copyright Statement

 Copyright (C) The Internet Society (2005).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Housley Standards Track [Page 61]

