
Network Working Group J. Whitehead
Request for Comments: 3648 U.C. Santa Cruz
Category: Standards Track J. Reschke, Ed.
 greenbytes
 December 2003

 Web Distributed Authoring and Versioning (WebDAV)
 Ordered Collections Protocol

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2003). All Rights Reserved.

Abstract

 This specification extends the Web Distributed Authoring and
 Versioning (WebDAV) Protocol to support the server-side ordering of
 collection members. Of particular interest are orderings that are
 not based on property values, and so cannot be achieved using a
 search protocol’s ordering option and cannot be maintained
 automatically by the server. Protocol elements are defined to let
 clients specify the position in the ordering of each collection
 member, as well as the semantics governing the ordering.

Whitehead & Reschke Standards Track [Page 1]

RFC 3648 WebDAV Ordered Collections Protocol December 2003

Table of Contents

 1. Notational Conventions . 3
 2. Introduction . 3
 3. Terminology . 4
 4. Overview of Ordered Collections 5
 4.1. Additional Collection properties 6
 4.1.1. DAV:ordering-type (protected). 6
 5. Creating an Ordered Collection 7
 5.1. Overview . 7
 5.2. Example: Creating an Ordered Collection. 8
 6. Setting the Position of a Collection Member. 8
 6.1. Overview . 8
 6.2. Examples: Setting the Position of a Collection Member. . 10
 6.3. Examples: Renaming a member of an ordered collection . . 10
 7. Changing a Collection Ordering: ORDERPATCH method. 11
 7.1. Example: Changing a Collection Ordering. 13
 7.2. Example: Failure of an ORDERPATCH Request. 14
 8. Listing the Members of an Ordered Collection 16
 8.1. Example: PROPFIND on an Ordered Collection 17
 9. Relationship to versioned collections. 19
 9.1. Collection Version Properties. 20
 9.1.1. Additional semantics for
 DAV:version-controlled-binding-set (protected) . 20
 9.1.2. DAV:ordering-type (protected). 20
 9.2. Additional CHECKIN semantics 20
 9.3. Additional CHECKOUT Semantics. 20
 9.4. Additional UNCHECKOUT, UPDATE, and MERGE Semantics . . . 21
 10. Capability Discovery . 21
 10.1. Example: Using OPTIONS for the Discovery of Support for
 Ordering . 22
 10.2. Example: Using Live Properties for the Discovery of
 Ordering . 22
 11. Security Considerations. 23
 11.1. Denial of Service and DAV:ordering-type 23
 12. Internationalization Considerations. 24
 13. IANA Considerations. 24
 14. Intellectual Property Statement. 25
 15. Contributors . 25
 16. Acknowledgements . 25
 17. Normative References . 26
 A. Extensions to the WebDAV Document Type Definition. 27
 Index. 27
 Authors’ Addresses . 29
 Full Copyright Statement . 30

Whitehead & Reschke Standards Track [Page 2]

RFC 3648 WebDAV Ordered Collections Protocol December 2003

1. Notational Conventions

 Since this document describes a set of extensions to the WebDAV
 Distributed Authoring Protocol [RFC2518], which is itself an
 extension to the HTTP/1.1 protocol, the augmented BNF used here to
 describe protocol elements is exactly the same as described in
 Section 2.1 of HTTP [RFC2616]. Since this augmented BNF uses the
 basic production rules provided in Section 2.2 of HTTP, these rules
 apply to this document as well.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 This document uses XML DTD fragments as a purely notational
 convention. WebDAV request and response bodies can not be validated
 due to the specific extensibility rules defined in section 23 of
 [RFC2518] and due to the fact that all XML elements defined by this
 specification use the XML namespace name "DAV:". In particular:

 1. element names use the "DAV:" namespace,

 2. element ordering is irrelevant,

 3. extension elements (elements not already defined as valid child
 elements) may be added anywhere, except where explicitly stated
 otherwise,

 4. extension attributes (attributes not already defined as valid for
 this element) may be added anywhere, except where explicitly
 stated otherwise.

2. Introduction

 This specification builds on the collection infrastructure provided
 by the WebDAV Distributed Authoring Protocol, adding support for the
 server-side ordering of collection members.

 There are many scenarios in which it is useful to impose an ordering
 on a collection at the server, such as expressing a recommended
 access order, or a revision history order. The members of a
 collection might represent the pages of a book, which need to be
 presented in order if they are to make sense, or an instructor might
 create a collection of course readings that she wants to be displayed
 in the order they are to be read.

 Orderings may be based on property values, but this is not always the
 case. The resources in the collection may not have properties that

Whitehead & Reschke Standards Track [Page 3]

RFC 3648 WebDAV Ordered Collections Protocol December 2003

 can be used to support the desired ordering. Orderings based on
 properties can be obtained using a search protocol’s ordering option,
 but orderings not based on properties cannot. These orderings
 generally need to be maintained by a human user.

 The ordering protocol defined here focuses on support for such
 human-maintained orderings. Its protocol elements allow clients to
 specify the position of each collection member in the collection’s
 ordering, as well as the semantics governing the order. The protocol
 is designed to allow additional support in the future for orderings
 that are maintained automatically by the server.

 The remainder of this document is structured as follows: Section 3
 defines terminology that will be used throughout the specification.
 Section 4 provides an overview of ordered collections. Section 5
 describes how to create an ordered collection, and Section 6
 discusses how to set a member’s position in the ordering of a
 collection. Section 7 explains how to change a collection ordering.
 Section 8 discusses listing the members of an ordered collection.
 Section 9 discusses the impact on version-controlled collections (as
 defined in [RFC3253]). Section 10 describes capability discovery.
 Sections 11 through 13 discuss security, internationalization, and
 IANA considerations. The remaining sections provide supporting
 information.

3. Terminology

 The terminology used here follows that in [RFC2518] and [RFC3253].
 Definitions of the terms resource, Uniform Resource Identifier (URI),
 and Uniform Resource Locator (URL) are provided in [RFC2396].

 Ordered Collection

 A collection for which the results from a PROPFIND request are
 guaranteed to be in the order specified for that collection.

 Unordered Collection

 A collection for which the client cannot depend on the
 repeatability of the ordering of results from a PROPFIND request.

 Client-Maintained Ordering

 An ordering of collection members that is maintained on the server
 based on client requests specifying the position of each
 collection member in the ordering.

Whitehead & Reschke Standards Track [Page 4]

RFC 3648 WebDAV Ordered Collections Protocol December 2003

 Server-Maintained Ordering

 An ordering of collection members that is maintained automatically
 by the server, based on a client’s choice of ordering semantics.

 Ordering Semantics

 In general, ordering semantics are the set of structures or
 meanings applied to the ordering of the member of a specific
 collection. Within this document, "ordering semantics" refers
 specifically to the structure specified in the DAV:ordering-type
 property. See Section 4.1.1 for more information on
 DAV:ordering-type.

 This document uses the terms "precondition", "postcondition" and
 "protected property" as defined in [RFC3253]. Servers MUST report
 pre-/postcondition failures as described in section 1.6 of this
 document.

4. Overview of Ordered Collections

 If a collection is not ordered, the client cannot depend on the
 repeatability of the ordering of results from a PROPFIND request. By
 specifying an ordering for a collection, a client requires the server
 to follow that ordering whenever it responds to a PROPFIND request on
 that collection.

 Server-side orderings may be client-maintained or server-maintained.
 For client-maintained orderings, a client must specify the ordering
 position of each of the collection’s members, either when the member
 is added to the collection (using the Position header (Section 6)) or
 later (using the ORDERPATCH (Section 7) method). For server-
 maintained orderings, the server automatically positions each of the
 collection’s members according to the ordering semantics. This
 specification supports only client-maintained orderings, but is
 designed to allow the future extension with server-maintained
 orderings.

 A collection that supports ordering is not required to be ordered.

 If a collection is ordered, each of its internal member URIs MUST
 appear in the ordering exactly once, and the ordering MUST NOT
 include any URIs that are not internal members of the collection.
 The server is responsible for enforcing these constraints on
 orderings. The server MUST remove an internal member URI from the
 ordering when it is removed from the collection. Removing an
 internal member MUST NOT affect the ordering of the remaining

Whitehead & Reschke Standards Track [Page 5]

RFC 3648 WebDAV Ordered Collections Protocol December 2003

 internal members. The server MUST add an internal member URI to the
 ordering when it is added to the collection.

 Only one ordering can be attached to any collection. Multiple
 orderings of the same resources can be achieved by creating multiple
 collections referencing those resources, and attaching a different
 ordering to each collection.

 An ordering is considered to be part of the state of a collection
 resource. Consequently, the ordering is the same no matter which URI
 is used to access the collection and is protected by locks or access
 control constraints on the collection.

4.1. Additional Collection properties

 A DAV:allprop PROPFIND request SHOULD NOT return any of the
 properties defined in this document.

4.1.1. DAV:ordering-type (protected)

 The DAV:ordering-type property indicates whether the collection is
 ordered and, if so, uniquely identifies the semantics of the
 ordering. It may also point to an explanation of the semantics in
 human and/or machine-readable form. At a minimum, this allows human
 users who add members to the collection to understand where to
 position them in the ordering. This property cannot be set using
 PROPPATCH. Its value can only be set by including the Ordering-Type
 header with a MKCOL request or by submitting an ORDERPATCH request.

 Ordering types are identified by URIs that uniquely identify the
 semantics of the collection’s ordering. The following two URIs are
 predefined:

 DAV:custom: The value DAV:custom indicates that the collection is
 ordered, but the semantics governing the ordering are not being
 advertised.

 DAV:unordered: The value DAV:unordered indicates that the collection
 is not ordered. That is, the client cannot depend on the
 repeatability of the ordering of results from a PROPFIND request.

 An ordering-aware client interacting with an ordering-unaware server
 (e.g., one that is implemented only according to [RFC2518]) SHOULD
 assume that the collection is unordered if a collection does not have
 the DAV:ordering-type property.

 <!ELEMENT ordering-type (href) >

Whitehead & Reschke Standards Track [Page 6]

RFC 3648 WebDAV Ordered Collections Protocol December 2003

5. Creating an Ordered Collection

5.1. Overview

 When a collection is created, the client MAY request that it be
 ordered and specify the semantics of the ordering by using the new
 Ordering-Type header (defined below) with a MKCOL request.

 For collections that are ordered, the client SHOULD identify the
 semantics of the ordering with a URI in the Ordering-Type header,
 although the client MAY simply set the header value to DAV:custom to
 indicate that the collection is ordered but the semantics of the
 ordering are not being advertised. Setting the value to a URI that
 identifies the ordering semantics provides the information a human
 user or software package needs to insert new collection members into
 the ordering intelligently. Although the URI in the Ordering-Type
 header MAY point to a resource that contains a definition of the
 semantics of the ordering, clients SHOULD NOT access that resource to
 avoid overburdening its server. A value of DAV:unordered in the
 Ordering-Type header indicates that the client wants the collection
 to be unordered. If the Ordering-Type header is not present, the
 collection will be unordered.

 Additional Marshalling:

 Ordering-Type = "Ordering-Type" ":" absoluteURI
 ; absoluteURI: see RFC2396, section 3

 The URI "DAV:unordered" indicates that the collection is not
 ordered, while "DAV:custom" indicates that the collection is to be
 ordered, but the semantics of the ordering is not being
 advertised. Any other URI value indicates that the collection is
 ordered, and identifies the semantics of the ordering.

 Additional Preconditions:

 (DAV:ordered-collections-supported): the server MUST support
 ordered collections in the part of the URL namespace identified by
 the request URL.

 Additional Postconditions:

 (DAV:ordering-type-set): if the Ordering-Type header was present,
 the request MUST have created a new collection resource with the
 DAV:ordering-type being set according to the Ordering-Type request
 header. The collection MUST be ordered unless the ordering type
 is "DAV:unordered".

Whitehead & Reschke Standards Track [Page 7]

RFC 3648 WebDAV Ordered Collections Protocol December 2003

5.2. Example: Creating an Ordered Collection

 >> Request:

 MKCOL /theNorth/ HTTP/1.1
 Host: example.org
 Ordering-Type: http://example.org/orderings/compass.html

 >> Response:

 HTTP/1.1 201 Created

 In this example, a new ordered collection was created. Its
 DAV:ordering-type property has the URI from the Ordering-Type header
 as its value http://example.org/orderings/compass.html. In this
 case, the URI identifies the semantics governing a client-maintained
 ordering. As new members are added to the collection, clients or end
 users can use the semantics to determine where to position the new
 members in the ordering.

6. Setting the Position of a Collection Member

6.1. Overview

 When a new member is added to a collection with a client-maintained
 ordering (for example, with PUT, COPY, or MKCOL), its position in the
 ordering can be set with the new Position header. The Position
 header allows the client to specify that an internal member URI
 should be first in the collection’s ordering, last in the
 collection’s ordering, immediately before some other internal member
 URI in the collection’s ordering, or immediately after some other
 internal member URI in the collection’s ordering.

 If the Position request header is not used when adding a member to an
 ordered collection, then:

 o If the request is replacing an existing resource, the server MUST
 preserve the present ordering.

 o If the request is adding a new internal member URI to the
 collection, the server MUST append the new member to the end of
 the ordering.

 Note to implementers: this specification does not mandate a specific
 implementation of MOVE operations within the same parent collection.
 Therefore, servers may either implement this as a simple rename
 operation (preserving the collection member’s position), or as a
 sequence of "remove" and "add" (causing the semantics of "adding a

Whitehead & Reschke Standards Track [Page 8]

RFC 3648 WebDAV Ordered Collections Protocol December 2003

 new member" to apply). Future revisions of this specification may
 specify this behaviour more precisely based on future implementation
 experience.

 Additional Marshalling:

 Position = "Position" ":" ("first" | "last" |
 (("before" | "after") segment))

 segment is defined in Section 3.3 of [RFC2396].

 The segment is interpreted relative to the collection to which the
 new member is being added.

 When the Position header is present, the server MUST insert the
 new member into the ordering at the specified location.

 The "first" keyword indicates that the new member is placed in the
 beginning position in the collection’s ordering, while "last"
 indicates that the new member is placed in the final position in
 the collection’s ordering. The "before" keyword indicates that
 the new member is added to the collection’s ordering immediately
 prior to the position of the member identified in the segment.
 Likewise, the "after" keyword indicates that the new member is
 added to the collection’s ordering immediately following the
 position of the member identified in the segment.

 If the request is replacing an existing resource and the Position
 header is present, the server MUST remove the internal member URI
 from its current position, and insert it at the newly requested
 position.

 Additional Preconditions:

 (DAV:collection-must-be-ordered): the target collection MUST be
 ordered.

 (DAV:segment-must-identify-member): the referenced segment MUST
 identify a resource that exists and is different from the affected
 resource.

 Additional Postconditions:

 (DAV:position-set): if a Position header is present, the request
 MUST create the new collection member at the specified position.

Whitehead & Reschke Standards Track [Page 9]

RFC 3648 WebDAV Ordered Collections Protocol December 2003

6.2. Examples: Setting the Position of a Collection Member

 >> Request:

 COPY /˜user/dav/spec08.html HTTP/1.1
 Host: example.org
 Destination: http://example.org/˜slein/dav/spec08.html
 Position: after requirements.html

 >> Response:

 HTTP/1.1 201 Created

 This request resulted in the creation of a new resource at
 example.org/˜slein/dav/spec08.html. The Position header in this
 example caused the server to set its position in the ordering of the
 /˜slein/dav/ collection immediately after requirements.html.

 >> Request:

 MOVE /i-d/draft-webdav-prot-08.txt HTTP/1.1
 Host: example.org
 Destination: http://example.org/˜user/dav/draft-webdav-prot-08.txt
 Position: first

 >> Response:

 HTTP/1.1 409 Conflict
 Content-Type: text/xml; charset="utf-8"
 Content-Length: xxxx

 <?xml version="1.0" encoding="utf-8" ?>
 <D:error xmlns:D="DAV:">
 <D:collection-must-be-ordered/>
 </D:error>

 In this case, the server returned a 409 (Conflict) status code
 because the /˜user/dav/ collection is an unordered collection.
 Consequently, the server was unable to satisfy the Position header.

6.3. Examples: Renaming a member of an ordered collection

 The following sequence of requests will rename a collection member
 while preserving its position, independently of how the server
 implements the MOVE operation:

Whitehead & Reschke Standards Track [Page 10]

RFC 3648 WebDAV Ordered Collections Protocol December 2003

 1. PROPFIND collection with depth 1, retrieving the DAV:ordering-type
 property (an interactive client has already likely done this in
 order to display the collection’s content).

 2. If the DAV:ordering-type property is present and does not equal
 "dav:unordered" (thus if the collection is ordered), determine the
 current position (such as "first" or "after x") and setup the
 Position header accordingly.

 3. Perform the MOVE operation, optionally supplying the Position
 header computed in the previous step.

7. Changing a Collection Ordering: ORDERPATCH method

 The ORDERPATCH method is used to change the ordering semantics of a
 collection, to change the order of the collection’s members in the
 ordering, or both.

 The server MUST apply the changes in the order they appear in the
 order XML element. The server MUST either apply all the changes or
 apply none of them. If any error occurs during processing, all
 executed changes MUST be undone and a proper error result returned.

 If an ORDERPATCH request changes the ordering semantics, but does not
 completely specify the order of the collection members, the server
 MUST assign a position in the ordering to each collection member for
 which a position was not specified. These server-assigned positions
 MUST follow the last position specified by the client. The result is
 that all members for which the client specified a position are at the
 beginning of the ordering, followed by any members for which the
 server assigned positions. Note that the ordering of the server-
 assigned positions is not defined by this document, therefore servers
 can use whatever rule seems reasonable (for instance, alphabetically
 or by creation date).

 If an ORDERPATCH request does not change the ordering semantics, any
 member positions not specified in the request MUST remain unchanged.

 A request to reposition a collection member to the same place in the
 ordering is not an error.

 If an ORDERPATCH request fails, the server state preceding the
 request MUST be restored.

Whitehead & Reschke Standards Track [Page 11]

RFC 3648 WebDAV Ordered Collections Protocol December 2003

 Additional Marshalling:

 The request body MUST be DAV:orderpatch element.

 <!ELEMENT orderpatch (ordering-type?, order-member*) >

 <!ELEMENT order-member (segment, position) >
 <!ELEMENT position (first | last | before | after)>
 <!ELEMENT segment (#PCDATA)>
 <!ELEMENT first EMPTY >
 <!ELEMENT last EMPTY >
 <!ELEMENT before segment >
 <!ELEMENT after segment >

 PCDATA value: segment, as defined in section 3.3 of [RFC2396].

 The DAV:ordering-type property is modified according to the
 DAV:ordering-type element.

 The ordering of internal member URIs in the collection identified
 by the Request-URI is changed based on instructions in the order-
 member XML elements. Specifically, in the order that they appear
 in the request. The order-member XML elements identify the
 internal member URIs whose positions are to be changed, and
 describe their new positions in the ordering. Each new position
 can be specified as first in the ordering, last in the ordering,
 immediately before some other internal member URI, or immediately
 after some other internal member URI.

 If a response body for a successful request is included, it MUST
 be a DAV:orderpatch-response XML element. Note that this document
 does not define any elements for the ORDERPATCH response body, but
 the DAV:orderpatch-response element is defined to ensure
 interoperability between future extensions that do define elements
 for the ORDERPATCH response body.

 <!ELEMENT orderpatch-response ANY>

 Since multiple changes can be requested in a single ORDERPATCH
 request, the server MUST return a 207 (Multi-Status) response
 (defined in [RFC2518]), containing DAV:response elements for
 either the request-URI (when the DAV:ordering-type could not be
 modified) or URIs of collection members to be repositioned (when
 an individual positioning request expressed as DAV:order-member
 could not be fulfilled) if any problems are encountered.

Whitehead & Reschke Standards Track [Page 12]

RFC 3648 WebDAV Ordered Collections Protocol December 2003

 Preconditions:

 (DAV:collection-must-be-ordered): see Section 6.1.

 (DAV:segment-must-identify-member): see Section 6.1.

 Postconditions:

 (DAV:ordering-type-set): if the request body contained a
 DAV:ordering-type element, the request MUST have set the
 DAV:ordering-type property of the collection to the value
 specified in the request.

 (DAV:ordering-modified): if the request body contained DAV:order-
 member elements, the request MUST have set the ordering of
 internal member URIs in the collection identified by the request-
 URI based upon the instructions in the DAV:order-member elements.

7.1. Example: Changing a Collection Ordering

 Consider an ordered collection /coll-1, with bindings ordered as
 follows:

 three.html
 four.html
 one.html
 two.html

 >> Request:

 ORDERPATCH /coll-1/ HTTP/1.1
 Host: example.org
 Content-Type: text/xml; charset="utf-8"
 Content-Length: xxx

 <?xml version="1.0" ?>
 <d:orderpatch xmlns:d="DAV:">
 <d:ordering-type>
 <d:href>http://example.org/inorder.ord</d:href>
 </d:ordering-type>
 <d:order-member>
 <d:segment>two.html</d:segment>
 <d:position><d:first/></d:position>
 </d:order-member>
 <d:order-member>
 <d:segment>one.html</d:segment>
 <d:position><d:first/></d:position>
 </d:order-member>

Whitehead & Reschke Standards Track [Page 13]

RFC 3648 WebDAV Ordered Collections Protocol December 2003

 <d:order-member>
 <d:segment>three.html</d:segment>
 <d:position><d:last/></d:position>
 </d:order-member>
 <d:order-member>
 <d:segment>four.html</d:segment>
 <d:position><d:last/></d:position>
 </d:order-member>
 </d:orderpatch>

 >> Response:

 HTTP/1.1 200 OK

 In this example, after the request has been processed, the
 collection’s ordering semantics are identified by the URI http://
 example.org/inorder.ord. The value of the collection’s
 DAV:ordering-type property has been set to this URI. The request
 also contains instructions for changing the positions of the
 collection’s internal member URIs in the ordering to comply with the
 new ordering semantics. As the DAV:order-member elements are
 required to be processed in the order they appear in the request,
 two.html is moved to the beginning of the ordering, and then one.html
 is moved to the beginning of the ordering. Then three.html is moved
 to the end of the ordering, and finally four.html is moved to the end
 of the ordering. After the request has been processed, the
 collection’s ordering is as follows:

 one.html
 two.html
 three.html
 four.html

7.2. Example: Failure of an ORDERPATCH Request

 Consider a collection /coll-1/ with members ordered as follows:

 nunavut.map
 nunavut.img
 baffin.map
 baffin.desc
 baffin.img
 iqaluit.map
 nunavut.desc
 iqaluit.img
 iqaluit.desc

Whitehead & Reschke Standards Track [Page 14]

RFC 3648 WebDAV Ordered Collections Protocol December 2003

 >> Request:

 ORDERPATCH /coll-1/ HTTP/1.1
 Host: www.nunanet.com
 Content-Type: text/xml; charset="utf-8"
 Content-Length: xxx

 <?xml version="1.0" ?>
 <d:orderpatch xmlns:d="DAV:">
 <d:order-member>
 <d:segment>nunavut.desc</d:segment>
 <d:position>
 <d:after>
 <d:segment>nunavut.map</d:segment>
 </d:after>
 </d:position>
 </d:order-member>
 <d:order-member>
 <d:segment>iqaluit.map</d:segment>
 <d:position>
 <d:after>
 <d:segment>pangnirtung.img</d:segment>
 </d:after>
 </d:position>
 </d:order-member>
 </d:orderpatch>

 >> Response:

 HTTP/1.1 207 Multi-Status
 Content-Type: text/xml; charset="utf-8"
 Content-Length: xxx

 <?xml version="1.0" ?>
 <d:multistatus xmlns:d="DAV:">
 <d:response>
 <d:href>http://www.nunanet.com/coll-1/iqaluit.map</d:href>
 <d:status>HTTP/1.1 403 Forbidden</d:status>
 <d:responsedescription>
 <d:error><d:segment-must-identify-member/></d:error>
 pangnirtung.img is not a collection member.
 </d:responsedescription>
 </d:response>
 </d:multistatus>

Whitehead & Reschke Standards Track [Page 15]

RFC 3648 WebDAV Ordered Collections Protocol December 2003

 In this example, the client attempted to position iqaluit.map after a
 URI that is not an internal member of the collection /coll-1/. The
 server responded to this client error with a 403 (Forbidden) status
 code, indicating the failed precondition DAV:segment-must-identify-
 member. Because ORDERPATCH is an atomic method, the request to
 reposition nunavut.desc (which would otherwise have succeeded) failed
 as well, but does not need to be expressed in the multistatus
 response body.

8. Listing the Members of an Ordered Collection

 A PROPFIND request is used to retrieve a listing of the members of an
 ordered collection, just as it is used to retrieve a listing of the
 members of an unordered collection.

 However, when responding to a PROPFIND on an ordered collection, the
 server MUST order the response elements according to the ordering
 defined on the collection. If a collection is unordered, the client
 cannot depend on the repeatability of the ordering of results from a
 PROPFIND request.

 In a response to a PROPFIND with Depth: infinity, members of
 different collections may be interleaved. That is, the server is not
 required to do a breadth-first traversal. The only requirement is
 that the members of any ordered collection appear in the order
 defined for that collection. Thus, for the hierarchy illustrated in
 the following figure, where collection A is an ordered collection
 with the ordering B C D,

 A
 /|\
 / | \
 B C D
 / /|\
 E F G H

 it would be acceptable for the server to return response elements in
 the order A B E C F G H D or "A B E C H G F D" as well (if C is
 unordered). In this response, B, C, and D appear in the correct
 order, separated by members of other collections. Clients can use a
 series of Depth: 1 PROPFIND requests to avoid the complexity of
 processing Depth: infinity responses based on depth-first traversals.

Whitehead & Reschke Standards Track [Page 16]

RFC 3648 WebDAV Ordered Collections Protocol December 2003

8.1. Example: PROPFIND on an Ordered Collection

 Suppose a PROPFIND request is submitted to /MyColl/, which has its
 members ordered as follows.

 /MyColl/
 lakehazen.html
 siorapaluk.html
 iqaluit.html
 newyork.html

 >> Request:

 PROPFIND /MyColl/ HTTP/1.1

 Host: example.org
 Depth: 1
 Content-Type: text/xml; charset="utf-8"
 Content-Length: xxxx

 <?xml version="1.0" ?>
 <D:propfind xmlns:D="DAV:">
 <D:prop xmlns:J="http://example.org/jsprops/">
 <D:ordering-type/>
 <D:resourcetype/>
 <J:latitude/>
 </D:prop>
 </D:propfind>

 >> Response:

 HTTP/1.1 207 Multi-Status
 Content-Type: text/xml; charset="utf-8"
 Content-Length: xxxx

 <?xml version="1.0" ?>
 <D:multistatus xmlns:D="DAV:"
 xmlns:J="http://example.org/jsprops/">
 <D:response>
 <D:href>http://example.org/MyColl/</D:href>
 <D:propstat>
 <D:prop>
 <D:ordering-type>
 <D:href>DAV:custom</D:href>
 </D:ordering-type>
 <D:resourcetype><D:collection/></D:resourcetype>
 </D:prop>
 <D:status>HTTP/1.1 200 OK</D:status>

Whitehead & Reschke Standards Track [Page 17]

RFC 3648 WebDAV Ordered Collections Protocol December 2003

 </D:propstat>
 <D:propstat>
 <D:prop>
 <J:latitude/>
 </D:prop>
 <D:status>HTTP/1.1 404 Not Found</D:status>
 </D:propstat>
 </D:response>
 <D:response>
 <D:href>http://example.org/MyColl/lakehazen.html</D:href>
 <D:propstat>
 <D:prop>
 <D:resourcetype/>
 <J:latitude>82N</J:latitude>
 </D:prop>
 <D:status>HTTP/1.1 200 OK</D:status>
 </D:propstat>
 <D:propstat>
 <D:prop>
 <D:ordering-type/>
 </D:prop>
 <D:status>HTTP/1.1 404 Not Found</D:status>
 </D:propstat>
 </D:response>
 <D:response>
 <D:href
 >http://example.org/MyColl/siorapaluk.html</D:href>
 <D:propstat>
 <D:prop>
 <D:resourcetype/>
 <J:latitude>78N</J:latitude>
 </D:prop>
 <D:status>HTTP/1.1 200 OK</D:status>
 </D:propstat>
 <D:propstat>
 <D:prop>
 <D:ordering-type/>
 </D:prop>
 <D:status>HTTP/1.1 404 Not Found</D:status>
 </D:propstat>
 </D:response>
 <D:response>
 <D:href>http://example.org/MyColl/iqaluit.html</D:href>
 <D:propstat>
 <D:prop>
 <D:resourcetype/>
 <J:latitude>62N</J:latitude>
 </D:prop>

Whitehead & Reschke Standards Track [Page 18]

RFC 3648 WebDAV Ordered Collections Protocol December 2003

 <D:status>HTTP/1.1 200 OK</D:status>
 </D:propstat>
 <D:propstat>
 <D:prop>
 <D:ordering-type/>
 </D:prop>
 <D:status>HTTP/1.1 404 Not Found</D:status>
 </D:propstat>
 </D:response>
 <D:response>
 <D:href>http://example.org/MyColl/newyork.html</D:href>
 <D:propstat>
 <D:prop>
 <D:resourcetype/>
 <J:latitude>45N</J:latitude>
 </D:prop>
 <D:status>HTTP/1.1 200 OK</D:status>
 <D:propstat>
 <D:prop>
 <D:ordering-type/>
 </D:prop>
 <D:status>HTTP/1.1 404 Not Found</D:status>
 </D:propstat>
 </D:propstat>
 </D:response>
 </D:multistatus>

 In this example, the server responded with a list of the collection
 members in the order defined for the collection.

9. Relationship to versioned collections

 The Versioning Extensions to WebDAV [RFC3253] introduce the concept
 of versioned collections, recording both the dead properties and the
 set of internal version-controlled bindings. This section defines
 how this feature interacts with ordered collections.

 This specification considers both the ordering type (DAV:ordering-
 type property) and the ordering of collection members to be part of
 the state of a collection. Therefore, both MUST be recorded upon
 CHECKIN or VERSION-CONTROL, and both MUST be restored upon CHECKOUT,
 UNCHECKOUT or UPDATE (where for compatibility with RFC 3253, only the
 ordering of version-controlled members needs to be maintained).

Whitehead & Reschke Standards Track [Page 19]

RFC 3648 WebDAV Ordered Collections Protocol December 2003

9.1. Collection Version Properties

9.1.1. Additional semantics for DAV:version-controlled-binding-set
 (protected)

 For ordered collections, the DAV:version-controlled-binding elements
 MUST appear in the ordering defined for the checked-in ordered
 collection.

9.1.2. DAV:ordering-type (protected)

 The DAV:ordering-type property records the DAV:ordering-type property
 of the checked-in ordered collection.

9.2. Additional CHECKIN semantics

 Additional Postconditions:

 (DAV:initialize-version-controlled-bindings-ordered): If the
 request-URL identified a both ordered and version-controlled
 collection, then the child elements of DAV:version-controlled-
 binding-set of the new collection version MUST appear in the
 ordering defined for that collection.

 (DAV:initialize-collection-version-ordering-type): If the
 request-URL identified a both ordered and version-controlled
 collection, then the DAV:ordering-type property of the new
 collection version MUST be a copy of the collection’s
 DAV:ordering-type property.

9.3. Additional CHECKOUT Semantics

 Additional Postconditions:

 (DAV:initialize-version-history-bindings-ordered): If the request
 has been applied to a collection version with a DAV:ordering-type
 other than "DAV:unordered", the bindings in the new working
 collection MUST be ordered according to the collection version’s
 DAV:version-controlled-binding-set property.

 (DAV:initialize-ordering-type): If the request has been applied to
 a collection version, the DAV:ordering-type property of the new
 working collection MUST be initialized from the collection
 version’s DAV:ordering-type property.

Whitehead & Reschke Standards Track [Page 20]

RFC 3648 WebDAV Ordered Collections Protocol December 2003

9.4. Additional UNCHECKOUT, UPDATE, and MERGE Semantics

 Additional Postconditions:

 (DAV:update-version-controlled-collection-members-ordered): If the
 request modified the DAV:checked-in version of a version-
 controlled collection and the DAV:ordering-type for the checked-in
 version is not unordered ("DAV:unordered"), the version-controlled
 members MUST be ordered according to the checked-in version’s
 DAV:version-controlled-binding-set property. The ordering of
 non-version-controlled members is server-defined.

 (DAV:update-version-ordering-type): If the request modified the
 DAV:checked-in version of a version-controlled collection, the
 DAV:ordering-type property MUST be updated from the checked-in
 version’s property.

10. Capability Discovery

 Sections 9.1 and 15 of [RFC2518] describe the use of compliance
 classes with the DAV header in responses to OPTIONS, indicating which
 parts of the Web Distributed Authoring protocols the resource
 supports. This specification defines an OPTIONAL extension to
 [RFC2518]. It defines a new compliance class, called ordered-
 collections, for use with the DAV header in responses to OPTIONS
 requests. If a collection resource does support ordering, its
 response to an OPTIONS request may indicate that it does, by listing
 the new ORDERPATCH method as one it supports, and by listing the new
 ordered-collections compliance class in the DAV header.

 When responding to an OPTIONS request, only a collection or a null
 resource can include ordered-collections in the value of the DAV
 header. By including ordered-collections, the resource indicates
 that its internal member URIs can be ordered. It implies nothing
 about whether any collections identified by its internal member URIs
 can be ordered.

 Furthermore, RFC 3253 [RFC3253] introduces the live properties
 DAV:supported-method-set (section 3.1.3) and DAV:supported-live-
 property-set (section 3.1.4). Servers MUST support these properties
 as defined in RFC 3253.

Whitehead & Reschke Standards Track [Page 21]

RFC 3648 WebDAV Ordered Collections Protocol December 2003

10.1. Example: Using OPTIONS for the Discovery of Support for
 Ordering

 >> Request:

 OPTIONS /somecollection/ HTTP/1.1
 Host: example.org

 >> Response:

 HTTP/1.1 200 OK
 Allow: OPTIONS, GET, HEAD, POST, PUT, DELETE, TRACE, COPY, MOVE
 Allow: MKCOL, PROPFIND, PROPPATCH, LOCK, UNLOCK, ORDERPATCH
 DAV: 1, 2, ordered-collections

 The DAV header in the response indicates that the resource
 /somecollection/ is level 1 and level 2 compliant, as defined in
 [RFC2518]. In addition, /somecollection/ supports ordering. The
 Allow header indicates that ORDERPATCH requests can be submitted to
 /somecollection/.

10.2. Example: Using Live Properties for the Discovery of Ordering

 >> Request:
 PROPFIND /somecollection HTTP/1.1
 Depth: 0
 Content-Type: text/xml; charset="utf-8"
 Content-Length: xxx

 <?xml version="1.0" encoding="UTF-8" ?>
 <propfind xmlns="DAV:">
 <prop>
 <supported-live-property-set/>
 <supported-method-set/>
 </prop>
 </propfind>

 >> Response:
 HTTP/1.1 207 Multi-Status
 Content-Type: text/xml; charset="utf-8"
 Content-Length: xxx

 <?xml version="1.0" encoding="utf-8" ?>
 <multistatus xmlns="DAV:">
 <response>
 <href>http://example.org/somecollection</href>
 <propstat>
 <prop>

Whitehead & Reschke Standards Track [Page 22]

RFC 3648 WebDAV Ordered Collections Protocol December 2003

 <supported-live-property-set>
 <supported-live-property>
 <prop><ordering-type/></prop>
 </supported-live-property>
 <!-- ... other live properties omitted for brevity ... -->
 </supported-live-property-set>
 <supported-method-set>
 <supported-method name="COPY" />
 <supported-method name="DELETE" />
 <supported-method name="GET" />
 <supported-method name="HEAD" />
 <supported-method name="LOCK" />
 <supported-method name="MKCOL" />
 <supported-method name="MOVE" />
 <supported-method name="OPTIONS" />
 <supported-method name="ORDERPATCH" />
 <supported-method name="POST" />
 <supported-method name="PROPFIND" />
 <supported-method name="PROPPATCH" />
 <supported-method name="PUT" />
 <supported-method name="TRACE" />
 <supported-method name="UNLOCK" />
 </supported-method-set>
 </prop>
 <status>HTTP/1.1 200 OK</status>
 </propstat>
 </response>
 </multistatus>

 Note that actual responses MUST contain a complete list of supported
 live properties.

11. Security Considerations

 This section is provided to make WebDAV implementers aware of the
 security implications of this protocol.

 All of the security considerations of HTTP/1.1 and the WebDAV
 Distributed Authoring Protocol specification also apply to this
 protocol specification. In addition, ordered collections introduce a
 new security concern. This issue is detailed here.

11.1. Denial of Service and DAV:ordering-type

 There may be some risk of denial of service at sites that are
 advertised in the DAV:ordering-type property of collections.
 However, it is anticipated that widely-deployed applications will use
 hard-coded values for frequently-used ordering semantics rather than

Whitehead & Reschke Standards Track [Page 23]

RFC 3648 WebDAV Ordered Collections Protocol December 2003

 looking up the semantics at the location specified by DAV:ordering-
 type. This risk will be further reduced if clients observe the
 recommendation of Section 5.1 that requests not be sent to the URI in
 DAV:ordering-type.

12. Internationalization Considerations

 This specification follows the practices of [RFC2518] by encoding all
 human-readable content using [XML] and in the treatment of names.
 Consequently, this specification complies with the IETF Character Set
 Policy [RFC2277].

 WebDAV applications MUST support the character set tagging, character
 set encoding, and the language tagging functionality of the XML
 specification. This constraint ensures that the human-readable
 content of this specification complies with [RFC2277].

 As in [RFC2518], names in this specification fall into three
 categories: names of protocol elements such as methods and headers,
 names of XML elements, and names of properties. The naming of
 protocol elements follows the precedent of HTTP using English names
 encoded in USASCII for methods and headers. The names of XML
 elements used in this specification are English names encoded in
 UTF-8.

 For error reporting, [RFC2518] follows the convention of HTTP/1.1
 status codes, including with each status code a short, English
 description of the code (e.g., 423 Locked). Internationalized
 applications will ignore this message, and display an appropriate
 message in the user’s language and character set.

 This specification introduces no new strings that are displayed to
 users as part of normal, error-free operation of the protocol.

 For the rationale of these decisions and advice for application
 implementers, see [RFC2518].

13. IANA Considerations

 This document uses the namespaces defined by [RFC2518] for properties
 and XML elements. All other IANA considerations mentioned in
 [RFC2518] also apply to this document.

Whitehead & Reschke Standards Track [Page 24]

RFC 3648 WebDAV Ordered Collections Protocol December 2003

14. Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF’s procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

15. Contributors

 This document has benefited from significant contributions from Geoff
 Clemm, Jason Crawford, Jim Davis, Chuck Fay and Judith Slein.

16. Acknowledgements

 This document has benefited from thoughtful discussion by Jim Amsden,
 Steve Carter, Tyson Chihaya, Ken Coar, Ellis Cohen, Bruce Cragun,
 Spencer Dawkins, Mark Day, Rajiv Dulepet, David Durand, Lisa
 Dusseault, Roy Fielding, Yaron Goland, Fred Hitt, Alex Hopmann,
 Marcus Jager, Chris Kaler, Manoj Kasichainula, Rohit Khare, Daniel
 LaLiberte, Steve Martin, Larry Masinter, Jeff McAffer, Surendra
 Koduru Reddy, Max Rible, Sam Ruby, Bradley Sergeant, Nick Shelness,
 John Stracke, John Tigue, John Turner, Kevin Wiggen, and others.

Whitehead & Reschke Standards Track [Page 25]

RFC 3648 WebDAV Ordered Collections Protocol December 2003

17. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2277] Alvestrand, H., "IETF Policy on Character Sets and
 Languages", BCP 18, RFC 2277, January 1998.

 [RFC2396] Berners-Lee, T., Fielding, R. and L. Masinter, "Uniform
 Resource Identifiers (URI): Generic Syntax", RFC 2396,
 August 1998.

 [RFC2518] Goland, Y., Whitehead, E., Faizi, A., Carter, S. and D.
 Jensen, "HTTP Extensions for Distributed Authoring --
 WEBDAV", RFC 2518, February 1999.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter,
 L., Leach, P. and T. Berners-Lee, "Hypertext Transfer
 Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC3253] Clemm, G., Amsden, J., Ellison, T., Kaler, C. and J.
 Whitehead, "Versioning Extensions to WebDAV (Web
 Distributed Authoring and Versioning)", RFC 3253, March
 2002.

 [XML] Bray, T., Paoli, J., Sperberg-McQueen, C. and E. Maler,
 "Extensible Markup Language (XML) 1.0 (2nd ed)", W3C REC-
 xml, October 2000, <http://www.w3.org/TR/2000/REC-xml-
 20001006>.

Whitehead & Reschke Standards Track [Page 26]

RFC 3648 WebDAV Ordered Collections Protocol December 2003

Appendix A. Extensions to the WebDAV Document Type Definition

 <!ELEMENT orderpatch (ordering-type?, order-member*) >
 <!ELEMENT order-member (segment, position) >
 <!ELEMENT ordering-type (href) >
 <!ELEMENT position (first | last | before | after)>
 <!ELEMENT first EMPTY >
 <!ELEMENT last EMPTY >
 <!ELEMENT before segment >
 <!ELEMENT after segment >
 <!ELEMENT segment (#PCDATA)>

Index

 C
 Client-Maintained Ordering 4
 Condition Names
 DAV:collection-must-be-ordered (pre) 9
 DAV:initialize-collection-version-ordering-type (post) 20
 DAV:initialize-ordering-type (post) 21
 DAV:initialize-version-controlled-bindings-ordered (post) 20
 DAV:initialize-version-history-bindings-ordered (post) 20
 DAV:ordered-collections-supported (pre) 7
 DAV:ordering-modified (post) 13
 DAV:ordering-type-set (post) 7, 13
 DAV:position-set (post) 9
 DAV:segment-must-identify-member (pre) 9
 DAV:update-version-controlled-collection-members-ordered
 (post) 21
 DAV:update-version-ordering-type (post) 21

 D
 DAV header
 compliance class ’ordered-collections’ 21
 DAV:collection-must-be-ordered precondition 9
 DAV:custom ordering type 6
 DAV:initialize-collection-version-ordering-type postcondition 20
 DAV:initialize-ordering-type postcondition 21
 DAV:initialize-version-controlled-bindings-ordered
 postcondition 20
 DAV:initialize-version-history-bindings-ordered postcondition 20
 DAV:ordered-collections-supported precondition 7
 DAV:ordering-modified postcondition 13
 DAV:ordering-type property 6
 DAV:ordering-type-set postcondition 7, 13
 DAV:position-set postcondition 9
 DAV:segment-must-identify-member precondition 9
 DAV:unordered ordering type 6

Whitehead & Reschke Standards Track [Page 27]

RFC 3648 WebDAV Ordered Collections Protocol December 2003

 DAV:update-version-controlled-collection-members-ordered
 postcondition 21
 DAV:update-version-ordering-type postcondition 21

 H
 Headers
 Ordering-Type 7
 Position 9

 M
 Methods
 ORDERPATCH 11

 O
 Ordered Collection 4
 Ordering Semantics 5
 Ordering-Type header 7
 ORDERPATCH method 11

 P
 Position header 9
 Properties
 DAV:ordering-type 6

 S
 Server-Maintained Ordering 5

 U
 Unordered Collection 4

Whitehead & Reschke Standards Track [Page 28]

RFC 3648 WebDAV Ordered Collections Protocol December 2003

Authors’ Addresses

 Jim Whitehead
 UC Santa Cruz, Dept. of Computer Science
 1156 High Street
 Santa Cruz, CA 95064
 US

 EMail: ejw@cse.ucsc.edu

 Julian F. Reschke, Ed.
 greenbytes GmbH
 Salzmannstrasse 152
 Muenster, NW 48159
 Germany

 Phone: +49 251 2807760
 Fax: +49 251 2807761
 EMail: julian.reschke@greenbytes.de
 URI: http://greenbytes.de/tech/webdav/

Whitehead & Reschke Standards Track [Page 29]

RFC 3648 WebDAV Ordered Collections Protocol December 2003

Full Copyright Statement

 Copyright (C) The Internet Society (2003). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assignees.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Whitehead & Reschke Standards Track [Page 30]

