
Network Working Group J. Mogul
Request for Comments: 3230 Compaq WRL
Category: Standards Track A. Van Hoff
 Marimba
 January 2002

 Instance Digests in HTTP

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2002). All Rights Reserved.

Abstract

 HTTP/1.1 defines a Content-MD5 header that allows a server to include
 a digest of the response body. However, this is specifically defined
 to cover the body of the actual message, not the contents of the full
 file (which might be quite different, if the response is a Content-
 Range, or uses a delta encoding). Also, the Content-MD5 is limited
 to one specific digest algorithm; other algorithms, such as SHA-1
 (Secure Hash Standard), may be more appropriate in some
 circumstances. Finally, HTTP/1.1 provides no explicit mechanism by
 which a client may request a digest. This document proposes HTTP
 extensions that solve these problems.

Table of Contents

 1 Introduction.. 2
 1.1 Other limitations of HTTP/1.1............................ 3
 2 Goals... 4
 3 Terminology... 5
 4 Specification... 6
 4.1 Protocol parameter specifications........................ 6
 4.1.1 Digest algorithms................................. 6
 4.2 Instance digests... 7
 4.3 Header specifications.................................... 8
 4.3.1 Want-Digest....................................... 8
 4.3.2 Digest.. 9
 5 Negotiation of Content-MD5...................................... 9

Mogul, et. al. Standards Track [Page 1]

RFC 3230 Instance Digests in HTTP January 2002

 6 IANA Considerations... 10
 7 Security Considerations... 10
 8 Acknowledgements.. 10
 9 References.. 10
 10 Authors’ Addresses... 12
 11 Full Copyright Statement....................................... 13

1 Introduction

 Although HTTP is typically layered over a reliable transport
 protocol, such as TCP, this does not guarantee reliable transport of
 information from sender to receiver. Various problems, including
 undetected transmission errors, programming errors, corruption of
 stored data, and malicious intervention can cause errors in the
 transmitted information.

 A common approach to the problem of data integrity in a network
 protocol or distributed system, such as HTTP, is the use of digests,
 checksums, or hash values. The sender computes a digest and sends it
 with the data; the recipient computes a digest of the received data,
 and then verifies the integrity of this data by comparing the
 digests.

 Checksums are used at virtually all layers of the IP stack. However,
 different digest algorithms might be used at each layer, for reasons
 of computational cost, because the size and nature of the data being
 protected varies, and because the possible threats to data integrity
 vary. For example, Ethernet uses a Cyclic Redundancy Check (CRC).
 The IPv4 protocol uses a ones-complement checksum over the IP header
 (but not the rest of the packet). TCP uses a ones-complement
 checksum over the TCP header and data, and includes a "pseudo-header"
 to detect certain kinds of programming errors.

 HTTP/1.1 [4] includes a mechanism for ensuring message integrity, the
 Content-MD5 header. This header is actually defined for MIME-
 conformant messages in a standalone specification [10]. According to
 the HTTP/1.1 specification,

 The Content-MD5 entity-header field [...] is an MD5 digest of the
 entity-body for the purpose of providing an end-to-end message
 integrity check (MIC) of the entity-body.

 HTTP/1.1 borrowed Content-MD5 from the MIME world based on an analogy
 between MIME messages (e.g., electronic mail messages) and HTTP
 messages (requests to or responses from an HTTP server).

Mogul, et. al. Standards Track [Page 2]

RFC 3230 Instance Digests in HTTP January 2002

 As discussed in more detail in section 3, this analogy between MIME
 messages and HTTP messages has resulted in some confusion. In
 particular, while a MIME message is self-contained, an HTTP message
 might not contain the entire representation of the current state of a
 resource. (More precisely, an HTTP response might not contain an
 entire "instance"; see section 3 for a definition of this term.)

 There are at least two situations where this distinction is an issue:

 1. When an HTTP server sends a 206 (Partial Content) response, as
 defined in HTTP/1.1. The client may form its view of an
 instance (e.g., an HTML document) by combining a cache entry
 with the partial content in the message.

 2. When an HTTP server uses a "delta encoding", as proposed in a
 separate document [9]. A delta encoding represents the changes
 between the current instance of a resource and a previous
 instance, and is an efficient way of reducing the bandwidth
 required for cache updates. The client forms its view of an
 instance by applying the delta in the message to one of its
 cache entries.

 We include these two kinds of transformations in a potentially
 broader category we call "instance manipulations."

 In each of these cases, the server might use a Content-MD5 header to
 protect the integrity of the response message. However, because the
 MIC in a Content-MD5 header field applies only to the entity in that
 message, and not to the entire instance being reassembled, it cannot
 protect against errors due to data corruption (e.g., of cache
 entries), programming errors (e.g., improper application of a partial
 content or delta), certain malicious attacks [9], or corruption of
 certain HTTP headers in transit.

 Thus, the Content-MD5 header, while useful and sufficient in many
 cases, is not sufficient for verifying instance integrity in all uses
 of HTTP.

 The Digest Authentication mechanism [5] provides (in addition to its
 other goals) a message-digest function similar to Content-MD5, except
 that it includes certain header fields. Like Content-MD5, it covers
 a specific message, not an entire instance.

1.1 Other limitations of HTTP/1.1

 Checksums are not free. Computing a digest takes CPU resources, and
 might add latency to the generation of a message. (Some of these
 costs can be avoided by careful caching at the sender’s end, but in

Mogul, et. al. Standards Track [Page 3]

RFC 3230 Instance Digests in HTTP January 2002

 many cases such a cache would not have a useful hit ratio.)
 Transmitting a digest consumes HTTP header space (and therefore
 increases latency and network bandwidth requirements.) If the
 message recipient does not intend to use the digest, why should the
 message sender waste resources computing and sending it?

 The Content-MD5 header, of course, implies the use of the MD5
 algorithm [15]. Other algorithms, however, might be more appropriate
 for some purposes. These include the SHA-1 algorithm [12] and
 various "fingerprinting" algorithms [7]. HTTP currently provides no
 standardized support for the use of these algorithms.

 HTTP/1.1 apparently assumes that the choice to generate a digest is
 up to the sender, and provides no mechanism for the recipient to
 indicate whether a checksum would be useful, or what checksum
 algorithms it would understand.

2 Goals

 The goals of this proposal are:

 1. Digest coverage for entire instances communicated via HTTP.

 2. Support for multiple digest algorithms.

 3. Negotiation of the use of digests.

 The goals do not include:

 - header integrity
 The digest mechanisms described here cover only the bodies of
 instances, and do not protect the integrity of associated
 "entity headers" or other message headers.

 - authentication
 The digest mechanisms described here are not meant to support
 authentication of the source of a digest or of a message or
 instance. These mechanisms, therefore, are not sufficient
 defense against many kinds of malicious attacks.

 - privacy
 Digest mechanisms do not provide message privacy.

 - authorization
 The digest mechanisms described here are not meant to support
 authorization or other kinds of access controls.

Mogul, et. al. Standards Track [Page 4]

RFC 3230 Instance Digests in HTTP January 2002

 The Digest Access Authentication mechanism [5] can provide some
 integrity for certain HTTP headers, and does provide authentication.

3 Terminology

 HTTP/1.1 [4] defines the following terms:

 resource A network data object or service that can be
 identified by a URI, as defined in section 3.2.
 Resources may be available in multiple
 representations (e.g. multiple languages, data
 formats, size, resolutions) or vary in other ways.

 entity The information transferred as the payload of a
 request or response. An entity consists of
 metainformation in the form of entity-header fields
 and content in the form of an entity-body, as
 described in section 7.

 variant A resource may have one, or more than one,
 representation(s) associated with it at any given
 instant. Each of these representations is termed a
 ‘variant.’ Use of the term ‘variant’ does not
 necessarily imply that the resource is subject to
 content negotiation.

 The dictionary definition for "entity" is "something that has
 separate and distinct existence and objective or conceptual reality"
 [8]. Unfortunately, the definition for "entity" in HTTP/1.1 is
 similar to that used in MIME [6], based on an entirely false analogy
 between MIME and HTTP.

 In MIME, electronic mail messages do have distinct and separate
 existences. MIME defines "entity" as something that "refers
 specifically to the MIME-defined header fields and contents of either
 a message or one of the parts in the body of a multipart entity."

 In HTTP, however, a response message to a GET does not have a
 distinct and separate existence. Rather, it is describing the
 current state of a resource (or a variant, subject to a set of
 constraints). The HTTP/1.1 specification provides no term to
 describe "the value that would be returned in response to a GET
 request at the current time for the selected variant of the specified
 resource." This leads to awkward wordings in the HTTP/1.1
 specification in places where this concept is necessary.

Mogul, et. al. Standards Track [Page 5]

RFC 3230 Instance Digests in HTTP January 2002

 It is too late to fix the terminological failure in the HTTP/1.1
 specification, so we instead define a new term, for use in this
 document:

 instance The entity that would be returned in a status-200
 response to a GET request, at the current time, for
 the selected variant of the specified resource,
 with the application of zero or more content-
 codings, but without the application of any
 instance manipulations or transfer-codings.

 It is convenient to think of an entity tag, in HTTP/1.1, as being
 associated with an instance, rather than an entity. That is, for a
 given resource, two different response messages might include the
 same entity tag, but two different instances of the resource should
 never be associated with the same (strong) entity tag.

 We also define this term:

 instance manipulation
 An operation on one or more instances which may
 result in an instance being conveyed from server to
 client in parts, or in more than one response
 message. For example, a range selection or a delta
 encoding. Instance manipulations are end-to-end,
 and often involve the use of a cache at the client.

4 Specification

 In this specification, the key words "MUST", "MUST NOT", "SHOULD",
 "SHOULD NOT", and "MAY" are to be interpreted as described in RFC
 2119 [2].

4.1 Protocol parameter specifications

4.1.1 Digest algorithms

 Digest algorithm values are used to indicate a specific digest
 computation. For some algorithms, one or more parameters may be
 supplied.

 digest-algorithm = token

 The BNF for "parameter" is as is used in RFC 2616 [4]. All digest-
 algorithm values are case-insensitive.

Mogul, et. al. Standards Track [Page 6]

RFC 3230 Instance Digests in HTTP January 2002

 The Internet Assigned Numbers Authority (IANA) acts as a registry for
 digest-algorithm values. Initially, the registry contains the
 following tokens:

 MD5 The MD5 algorithm, as specified in RFC 1321 [15].
 The output of this algorithm is encoded using the
 base64 encoding [1].

 SHA The SHA-1 algorithm [12]. The output of this
 algorithm is encoded using the base64 encoding [1].

 UNIXsum The algorithm computed by the UNIX "sum" command,
 as defined by the Single UNIX Specification,
 Version 2 [13]. The output of this algorithm is an
 ASCII decimal-digit string representing the 16-bit
 checksum, which is the first word of the output of
 the UNIX "sum" command.

 UNIXcksum The algorithm computed by the UNIX "cksum" command,
 as defined by the Single UNIX Specification,
 Version 2 [13]. The output of this algorithm is an
 ASCII digit string representing the 32-bit CRC,
 which is the first word of the output of the UNIX
 "cksum" command.

 If other digest-algorithm values are defined, the associated encoding
 MUST either be represented as a quoted string, or MUST NOT include
 ";" or "," in the character sets used for the encoding.

4.2 Instance digests

 An instance digest is the representation of the output of a digest
 algorithm, together with an indication of the algorithm used (and any
 parameters).

 instance-digest = digest-algorithm "="
 <encoded digest output>

 The digest is computed on the entire instance associated with the
 message. The instance is a snapshot of the resource prior to the
 application of of any instance manipulation or transfer-coding (see
 section 3). The byte order used to compute the digest is the
 transmission byte order defined for the content-type of the instance.

Mogul, et. al. Standards Track [Page 7]

RFC 3230 Instance Digests in HTTP January 2002

 Note: the digest is computed before the application of any
 instance manipulation. If a range or a delta-coding [9] is used,
 the computation of the digest after the computation of the range
 or delta would not provide a digest useful for checking the
 integrity of the reassembled instance.

 The encoded digest output uses the encoding format defined for the
 specific digest-algorithm. For example, if the digest-algorithm is
 "MD5", the encoding is base64; if the digest-algorithm is "UNIXsum",
 the encoding is an ASCII string of decimal digits.

 Examples:

 MD5=HUXZLQLMuI/KZ5KDcJPcOA==
 sha=thvDyvhfIqlvFe+A9MYgxAfm1q5=
 UNIXsum=30637

4.3 Header specifications

 The following headers are defined.

4.3.1 Want-Digest

 The Want-Digest message header field indicates the sender’s desire to
 receive an instance digest on messages associated with the Request-
 URI.

 Want-Digest = "Want-Digest" ":"
 #(digest-algorithm [";" "q" "=" qvalue])

 If a digest-algorithm is not accompanied by a qvalue, it is treated
 as if its associated qvalue were 1.0.

 The sender is willing to accept a digest-algorithm if and only if it
 is listed in a Want-Digest header field of a message, and its qvalue
 is non-zero.

 If multiple acceptable digest-algorithm values are given, the
 sender’s preferred digest-algorithm is the one (or ones) with the
 highest qvalue.

 Examples:

 Want-Digest: md5
 Want-Digest: MD5;q=0.3, sha;q=1

Mogul, et. al. Standards Track [Page 8]

RFC 3230 Instance Digests in HTTP January 2002

4.3.2 Digest

 The Digest message header field provides a message digest of the
 instance described by the message.

 Digest = "Digest" ":" #(instance-digest)

 The instance described by a message might be fully contained in the
 message-body, partially-contained in the message-body, or not at all
 contained in the message-body. The instance is specified by the
 Request-URI and any cache-validator contained in the message.

 A Digest header field MAY contain multiple instance-digest values.
 This could be useful for responses expected to reside in caches
 shared by users with different browsers, for example.

 A recipient MAY ignore any or all of the instance-digests in a Digest
 header field.

 A sender MAY send an instance-digest using a digest-algorithm without
 knowing whether the recipient supports the digest-algorithm, or even
 knowing that the recipient will ignore it.

 Examples:

 Digest: md5=HUXZLQLMuI/KZ5KDcJPcOA==
 Digest: SHA=thvDyvhfIqlvFe+A9MYgxAfm1q5=,unixsum=30637

5 Negotiation of Content-MD5

 HTTP/1.1 provides a Content-MD5 header field, but does not provide
 any mechanism for requesting its use (or non-use). The Want-Digest
 header field defined in this document provides the basis for such a
 mechanism.

 First, we add to the set of digest-algorithm values (in section
 4.1.1) the token "contentMD5", with the provision that this digest-
 algorithm MUST NOT be used in a Digest header field.

 The presence of the "contentMD5" digest-algorithm with a non-zero
 qvalue in a Want-Digest header field indicates that the sender wishes
 to receive a Content-MD5 header on messages associated with the
 Request-URI.

 The presence of the "contentMD5" digest-algorithm with a zero qvalue
 in a Want-Digest header field indicates that the sender will ignore
 Content-MD5 headers on messages associated with the Request-URI.

Mogul, et. al. Standards Track [Page 9]

RFC 3230 Instance Digests in HTTP January 2002

6 IANA Considerations

 The Internet Assigned Numbers Authority (IANA) administers the name
 space for digest-algorithm values. Values and their meaning must be
 documented in an RFC or other peer-reviewed, permanent, and readily
 available reference, in sufficient detail so that interoperability
 between independent implementations is possible. Subject to these
 constraints, name assignments are First Come, First Served (see RFC
 2434 [11]).

7 Security Considerations

 This document specifies a data integrity mechanism that protects HTTP
 instance data, but not HTTP entity headers, from certain kinds of
 accidental corruption. It is also useful in detecting at least one
 spoofing attack [9]. However, it is not intended as general
 protection against malicious tampering with HTTP messages.

 The HTTP Digest Access Authentication mechanism [5] provides some
 protection against malicious tampering.

8 Acknowledgements

 It is not clear who first realized that the Content-MD5 header field
 is not sufficient to provide data integrity when ranges or deltas are
 used.

 Laurent Demailly may have been the first to suggest an algorithm-
 independent checksum header for HTTP [3]. Dave Raggett suggested the
 use of the term "digest" instead of "checksum" [14].

9 References

 [1] Freed, N. and N. Borenstein, N., "MIME (Multipurpose Internet
 Mail Extensions) Part One: Mechanisms for Specifying and
 Describing the Format of Internet Message Bodies", RFC 2049,
 November 1996.

 [2] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [3] Laurent Demailly. Re: Revised Charter.
 http://www.ics.uci.edu/pub/ietf/http/hypermail/1995q4/0165.html.

 [4] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L.,
 Leach, P. and T. Berners-Lee, "Hypertext Transfer Protocol --
 HTTP/1.1.", RFC 2616, June 1999.

Mogul, et. al. Standards Track [Page 10]

RFC 3230 Instance Digests in HTTP January 2002

 [5] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,
 Leach, P., Luotonen, A. and L. Stewart, "HTTP Authentication:
 Basic and Digest Access Authentication", RFC 2617, June 1999.

 [6] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message Bodies",
 RFC 2045, November 1996.

 [7] Nevin Heintze. Scalable Document Fingerprinting. Proc. Second
 USENIX Workshop on Electronic Commerce, USENIX, Oakland, CA,
 November, 1996, pp. 191-200.
 http://www.cs.cmu.edu/afs/cs/user/nch/www/koala/main.html.

 [8] Merriam-Webster. Webster’s Seventh New Collegiate Dictionary.
 G. & C. Merriam Co., Springfield, MA, 1963.

 [9] Mogul, J., Krishnamurthy, B., Douglis, F., Feldmann, A., Goland,
 Y. and A. van Hoff, "Delta encoding in HTTP", RFC 3229, December
 2001.

 [10] Myers, J. and M. Rose, "The Content-MD5 Header Field", RFC 1864,
 October 1995.

 [11] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA
 Considerations Section in RFCs", BCP 26, RFC 2434, October 1998.

 [12] National Institute of Standards and Technology. Secure Hash
 Standard. FEDERAL INFORMATION PROCESSING STANDARDS PUBLICATION
 180-1, U.S. Department of Commerce, April, 1995.
 http://csrc.nist.gov/fips/fip180-1.txt.

 [13] The Open Group. The Single UNIX Specification, Version 2 - 6
 Vol Set for UNIX 98. Document number T912, The Open Group,
 February, 1997.

 [14] Dave Raggett. Re: Revised Charter.
 http://www.ics.uci.edu/pub/ietf/http/hypermail/1995q4/0182.html.

 [15] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321, April
 1992.

Mogul, et. al. Standards Track [Page 11]

RFC 3230 Instance Digests in HTTP January 2002

10 Authors’ Addresses

 Jeffrey C. Mogul
 Western Research Laboratory
 Compaq Computer Corporation
 250 University Avenue
 Palo Alto, California, 94305, U.S.A.

 EMail: JeffMogul@acm.org
 Phone: 1 650 617 3304 (email preferred)

 Arthur van Hoff
 Marimba, Inc.
 440 Clyde Avenue
 Mountain View, CA 94043

 EMail: avh@marimba.com
 Phone: 1 (650) 930 5283

Mogul, et. al. Standards Track [Page 12]

RFC 3230 Instance Digests in HTTP January 2002

11 Full Copyright Statement

 Copyright (C) The Internet Society (2002). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Mogul, et. al. Standards Track [Page 13]

