
Network Working Group R. Herriot, Ed.
Request for Comments: 2565 Xerox Corporation
Category: Experimental S. Butler
 Hewlett-Packard
 P. Moore
 Microsoft
 R. Turner
 Sharp Labs
 April 1999

 Internet Printing Protocol/1.0: Encoding and Transport

Status of this Memo

 This memo defines an Experimental Protocol for the Internet
 community. It does not specify an Internet standard of any kind.
 Discussion and suggestions for improvement are requested.
 Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (1999). All Rights Reserved.

IESG Note

 This document defines an Experimental protocol for the Internet
 community. The IESG expects that a revised version of this protocol
 will be published as Proposed Standard protocol. The Proposed
 Standard, when published, is expected to change from the protocol
 defined in this memo. In particular, it is expected that the
 standards-track version of the protocol will incorporate strong
 authentication and privacy features, and that an "ipp:" URL type will
 be defined which supports those security measures. Other changes to
 the protocol are also possible. Implementors are warned that future
 versions of this protocol may not interoperate with the version of
 IPP defined in this document, or if they do interoperate, that some
 protocol features may not be available.

 The IESG encourages experimentation with this protocol, especially in
 combination with Transport Layer Security (TLS) [RFC 2246], to help
 determine how TLS may effectively be used as a security layer for
 IPP.

Herriot, et al. Experimental [Page 1]

RFC 2565 IPP/1.0: Encoding and Transport April 1999

Abstract

 This document is one of a set of documents, which together describe
 all aspects of a new Internet Printing Protocol (IPP). IPP is an
 application level protocol that can be used for distributed printing
 using Internet tools and technologies. This document defines the
 rules for encoding IPP operations and IPP attributes into a new
 Internet mime media type called "application/ipp". This document
 also defines the rules for transporting over HTTP a message body
 whose Content-Type is "application/ipp".

 The full set of IPP documents includes:

 Design Goals for an Internet Printing Protocol [RFC2567]
 Rationale for the Structure and Model and Protocol for the
 Internet Printing Protocol [RFC2568]
 Internet Printing Protocol/1.0: Model and Semantics [RFC2566]
 Internet Printing Protocol/1.0: Encoding and Transport (this
 document)
 Internet Printing Protocol/1.0: Implementer’s Guide [ipp-iig]
 Mapping between LPD and IPP Protocols [RFC2569]

 The document, "Design Goals for an Internet Printing Protocol", takes
 a broad look at distributed printing functionality, and it enumerates
 real-life scenarios that help to clarify the features that need to be
 included in a printing protocol for the Internet. It identifies
 requirements for three types of users: end users, operators, and
 administrators. It calls out a subset of end user requirements that
 are satisfied in IPP/1.0. Operator and administrator requirements are
 out of scope for version 1.0.

 The document, "Rationale for the Structure and Model and Protocol for
 the Internet Printing Protocol", describes IPP from a high level
 view, defines a roadmap for the various documents that form the suite
 of IPP specifications, and gives background and rationale for the
 IETF working group’s major decisions.

 The document, "Internet Printing Protocol/1.0: Model and Semantics",
 describes a simplified model with abstract objects, their attributes,
 and their operations that are independent of encoding and transport.
 It introduces a Printer and a Job object. The Job object optionally
 supports multiple documents per Job. It also addresses security,
 internationalization, and directory issues.

 This document "Internet Printing Protocol/1.0: Implementer’s Guide",
 gives advice to implementers of IPP clients and IPP objects.

Herriot, et al. Experimental [Page 2]

RFC 2565 IPP/1.0: Encoding and Transport April 1999

 The document "Mapping between LPD and IPP Protocols" gives some
 advice to implementers of gateways between IPP and LPD (Line Printer
 Daemon) implementations.

Table of Contents

 1. Introduction...4
 2. Conformance Terminology..4
 3. Encoding of the Operation Layer.................................4
 3.1 Picture of the Encoding.....................................5
 3.2 Syntax of Encoding..7
 3.3 Version-number..9
 3.4 Operation-id..9
 3.5 Status-code...9
 3.6 Request-id..9
 3.7 Tags...10
 3.7.1 Delimiter Tags...10
 3.7.2 Value Tags...11
 3.8 Name-Length..13
 3.9 (Attribute) Name...13
 3.10 Value Length...16
 3.11 (Attribute) Value..16
 3.12 Data...18
 4. Encoding of Transport Layer.....................................18
 5. Security Considerations...19
 5.1 Using IPP with SSL3..19
 6. References..20
 7. Authors’ Addresses..22
 8. Other Participants:...24
 9. Appendix A: Protocol Examples...................................25
 9.1 Print-Job Request..25
 9.2 Print-Job Response (successful)............................26
 9.3 Print-Job Response (failure)...............................27
 9.4 Print-Job Response (success with attributes ignored).......28
 9.5 Print-URI Request..30
 9.6 Create-Job Request...31
 9.7 Get-Jobs Request...31
 9.8 Get-Jobs Response..32
 10. Appendix C: Registration of MIME Media Type Information for
 "application/ipp"..35
 11. Full Copyright Statement.......................................37

Herriot, et al. Experimental [Page 3]

RFC 2565 IPP/1.0: Encoding and Transport April 1999

1. Introduction

 This document contains the rules for encoding IPP operations and
 describes two layers: the transport layer and the operation layer.

 The transport layer consists of an HTTP/1.1 request or response. RFC
 2068 [RFC2068] describes HTTP/1.1. This document specifies the HTTP
 headers that an IPP implementation supports.

 The operation layer consists of a message body in an HTTP request or
 response. The document "Internet Printing Protocol/1.0: Model and
 Semantics" [RFC2566] defines the semantics of such a message body and
 the supported values. This document specifies the encoding of an IPP
 operation. The aforementioned document [RFC2566] is henceforth
 referred to as the "IPP model document"

2. Conformance Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHOULD", "SHOULD NOT",
 "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
 interpreted as described in RFC 2119 [RFC2119].

3. Encoding of the Operation Layer

 The operation layer MUST contain a single operation request or
 operation response. Each request or response consists of a sequence
 of values and attribute groups. Attribute groups consist of a
 sequence of attributes each of which is a name and value. Names and
 values are ultimately sequences of octets

 The encoding consists of octets as the most primitive type. There are
 several types built from octets, but three important types are
 integers, character strings and octet strings, on which most other
 data types are built. Every character string in this encoding MUST be
 a sequence of characters where the characters are associated with
 some charset and some natural language. A character string MUST be in
 "reading order" with the first character in the value (according to
 reading order) being the first character in the encoding. A character
 string whose associated charset is US-ASCII whose associated natural
 language is US English is henceforth called a US-ASCII-STRING. A
 character string whose associated charset and natural language are
 specified in a request or response as described in the model document
 is henceforth called a LOCALIZED-STRING. An octet string MUST be in
 "IPP model document order" with the first octet in the value
 (according to the IPP model document order) being the first octet in
 the encoding Every integer in this encoding MUST be encoded as a
 signed integer using two’s-complement binary encoding with big-endian
 format (also known as "network order" and "most significant byte

Herriot, et al. Experimental [Page 4]

RFC 2565 IPP/1.0: Encoding and Transport April 1999

 first"). The number of octets for an integer MUST be 1, 2 or 4,
 depending on usage in the protocol. Such one-octet integers,
 henceforth called SIGNED-BYTE, are used for the version-number and
 tag fields. Such two-byte integers, henceforth called SIGNED-SHORT
 are used for the operation-id, status-code and length fields. Four
 byte integers, henceforth called SIGNED-INTEGER, are used for values
 fields and the sequence number.

 The following two sections present the operation layer in two ways

 - informally through pictures and description
 - formally through Augmented Backus-Naur Form (ABNF), as specified
 by RFC 2234 [RFC2234]

3.1 Picture of the Encoding

 The encoding for an operation request or response consists of:

 | version-number | 2 bytes - required

 | operation-id (request) |
 | or | 2 bytes - required
status-code (response)
request-id

 | xxx-attributes-tag | 1 byte |
 --- |-0 or more
 | xxx-attribute-sequence | n bytes |

 | end-of-attributes-tag | 1 byte - required

 | data | q bytes - optional

 The xxx-attributes-tag and xxx-attribute-sequence represents four
 different values of "xxx", namely, operation, job, printer and
 unsupported. The xxx-attributes-tag and an xxx-attribute-sequence
 represent attribute groups in the model document. The xxx-
 attributes-tag identifies the attribute group and the xxx-attribute-
 sequence contains the attributes.

 The expected sequence of xxx-attributes-tag and xxx-attribute-
 sequence is specified in the IPP model document for each operation
 request and operation response.

Herriot, et al. Experimental [Page 5]

RFC 2565 IPP/1.0: Encoding and Transport April 1999

 A request or response SHOULD contain each xxx-attributes-tag defined
 for that request or response even if there are no attributes except
 for the unsupported-attributes-tag which SHOULD be present only if
 the unsupported-attribute-sequence is non-empty. A receiver of a
 request MUST be able to process as equivalent empty attribute groups:

 a) an xxx-attributes-tag with an empty xxx-attribute-sequence,
 b) an expected but missing xxx-attributes-tag.

 The data is omitted from some operations, but the end-of-attributes-
 tag is present even when the data is omitted. Note, the xxx-
 attributes-tags and end-of-attributes-tag are called ’delimiter-
 tags’. Note: the xxx-attribute-sequence, shown above may consist of 0
 bytes, according to the rule below.

 An xxx-attributes-sequence consists of zero or more compound-
 attributes.

 | compound-attribute | s bytes - 0 or more

 A compound-attribute consists of an attribute with a single value
 followed by zero or more additional values.

 Note: a ’compound-attribute’ represents a single attribute in the
 model document. The ’additional value’ syntax is for attributes with
 2 or more values.

 Each attribute consists of:

 | value-tag | 1 byte

 | name-length (value is u) | 2 bytes

 | name | u bytes

 | value-length (value is v) | 2 bytes

 | value | v bytes

Herriot, et al. Experimental [Page 6]

RFC 2565 IPP/1.0: Encoding and Transport April 1999

 An additional value consists of:

 | value-tag | 1 byte |
 --- |
 | name-length (value is 0x0000) | 2 bytes |
 --- |-0 or more
 | value-length (value is w) | 2 bytes |
 --- |
 | value | w bytes |

 Note: an additional value is like an attribute whose name-length is 0.

 From the standpoint of a parsing loop, the encoding consists of:

 | version-number | 2 bytes - required

 | operation-id (request) |
 | or | 2 bytes - required
status-code (response)
request-id

 | tag (delimiter-tag or value-tag) | 1 byte |
 --- |-0 or more
 | empty or rest of attribute | x bytes |

 | end-of-attributes-tag | 2 bytes - required

 | data | y bytes - optional

 The value of the tag determines whether the bytes following the
 tag are:

 - attributes
 - data
 - the remainder of a single attribute where the tag specifies the
 type of the value.

3.2 Syntax of Encoding

 The syntax below is ABNF [RFC2234] except ’strings of literals’ MUST
 be case sensitive. For example ’a’ means lower case ’a’ and not
 upper case ’A’. In addition, SIGNED-BYTE and SIGNED-SHORT fields
 are represented as ’%x’ values which show their range of values.

Herriot, et al. Experimental [Page 7]

RFC 2565 IPP/1.0: Encoding and Transport April 1999

 ipp-message = ipp-request / ipp-response
 ipp-request = version-number operation-id request-id
 *(xxx-attributes-tag xxx-attribute-sequence)
 end-of-attributes-tag data
 ipp-response = version-number status-code request-id
 *(xxx-attributes-tag xxx-attribute-sequence)
 end-of-attributes-tag data
 xxx-attribute-sequence = *compound-attribute

 xxx-attributes-tag = operation-attributes-tag / job-attributes-tag /
 printer-attributes-tag / unsupported-attributes-tag

 version-number = major-version-number minor-version-number
 major-version-number = SIGNED-BYTE ; initially %d1
 minor-version-number = SIGNED-BYTE ; initially %d0

 operation-id = SIGNED-SHORT ; mapping from model defined below
 status-code = SIGNED-SHORT ; mapping from model defined below
 request-id = SIGNED-INTEGER ; whose value is > 0

 compound-attribute = attribute *additional-values
 attribute = value-tag name-length name value-length value
 additional-values = value-tag zero-name-length value-length value

 name-length = SIGNED-SHORT ; number of octets of ’name’
 name = LALPHA *(LALPHA / DIGIT / "-" / "_" / ".")
 value-length = SIGNED-SHORT ; number of octets of ’value’
 value = OCTET-STRING

 data = OCTET-STRING

 zero-name-length = %x00.00 ; name-length of 0
 operation-attributes-tag = %x01 ; tag of 1
 job-attributes-tag = %x02 ; tag of 2
 printer-attributes-tag = %x04 ; tag of 4
 unsupported-attributes-tag = %x05 ; tag of 5
 end-of-attributes-tag = %x03 ; tag of 3
 value-tag = %x10-FF

 SIGNED-BYTE = BYTE
 SIGNED-SHORT = 2BYTE
 SIGNED-INTEGER = 4BYTE
 DIGIT = %x30-39 ; "0" to "9"
 LALPHA = %x61-7A ; "a" to "z"
 BYTE = %x00-FF
 OCTET-STRING = *BYTE

Herriot, et al. Experimental [Page 8]

RFC 2565 IPP/1.0: Encoding and Transport April 1999

 The syntax allows an xxx-attributes-tag to be present when the xxx-
 attribute-sequence that follows is empty. The syntax is defined this
 way to allow for the response of Get-Jobs where no attributes are
 returned for some job-objects. Although it is RECOMMENDED that the
 sender not send an xxx-attributes-tag if there are no attributes
 (except in the Get-Jobs response just mentioned), the receiver MUST
 be able to decode such syntax.

3.3 Version-number

 The version-number MUST consist of a major and minor version-number,
 each of which MUST be represented by a SIGNED-BYTE. The protocol
 described in this document MUST have a major version-number of 1
 (0x01) and a minor version-number of 0 (0x00). The ABNF for these
 two bytes MUST be %x01.00.

3.4 Operation-id

 Operation-ids are defined as enums in the model document. An
 operation-ids enum value MUST be encoded as a SIGNED-SHORT.

 Note: the values 0x4000 to 0xFFFF are reserved for private
 extensions.

3.5 Status-code

 Status-codes are defined as enums in the model document. A status-
 code enum value MUST be encoded as a SIGNED-SHORT.

 The status-code is an operation attribute in the model document. In
 the protocol, the status-code is in a special position, outside of
 the operation attributes.

 If an IPP status-code is returned, then the HTTP Status-Code MUST be
 200 (successful-ok). With any other HTTP Status-Code value, the HTTP
 response MUST NOT contain an IPP message-body, and thus no IPP
 status-code is returned.

3.6 Request-id

 The request-id allows a client to match a response with a request.
 This mechanism is unnecessary in HTTP, but may be useful when
 application/ipp entity bodies are used in another context.

 The request-id in a response MUST be the value of the request-id
 received in the corresponding request. A client can set the
 request-id in each request to a unique value or a constant value,
 such as 1, depending on what the client does with the request-id

Herriot, et al. Experimental [Page 9]

RFC 2565 IPP/1.0: Encoding and Transport April 1999

 returned in the response. The value of the request-id MUST be greater
 than zero.

3.7 Tags

 There are two kinds of tags:

 - delimiter tags: delimit major sections of the protocol, namely
 attributes and data
 - value tags: specify the type of each attribute value

3.7.1 Delimiter Tags

 The following table specifies the values for the delimiter tags:

 Tag Value (Hex) Delimiter

 0x00 reserved
 0x01 operation-attributes-tag
 0x02 job-attributes-tag
 0x03 end-of-attributes-tag
 0x04 printer-attributes-tag
 0x05 unsupported-attributes-tag
 0x06-0x0e reserved for future delimiters
 0x0F reserved for future chunking-end-of-attributes-
 tag

 When an xxx-attributes-tag occurs in the protocol, it MUST mean that
 zero or more following attributes up to the next delimiter tag are
 attributes belonging to group xxx as defined in the model document,
 where xxx is operation, job, printer, unsupported.

 Doing substitution for xxx in the above paragraph, this means the
 following. When an operation-attributes-tag occurs in the protocol,
 it MUST mean that the zero or more following attributes up to the
 next delimiter tag are operation attributes as defined in the model
 document. When an job-attributes-tag occurs in the protocol, it MUST
 mean that the zero or more following attributes up to the next
 delimiter tag are job attributes or job template attributes as
 defined in the model document. When a printer-attributes-tag occurs
 in the protocol, it MUST mean that the zero or more following
 attributes up to the next delimiter tag are printer attributes as
 defined in the model document. When an unsupported-attributes-tag
 occurs in the protocol, it MUST mean that the zero or more following
 attributes up to the next delimiter tag are unsupported attributes as
 defined in the model document.

Herriot, et al. Experimental [Page 10]

RFC 2565 IPP/1.0: Encoding and Transport April 1999

 The operation-attributes-tag and end-of-attributes-tag MUST each
 occur exactly once in an operation. The operation-attributes-tag MUST
 be the first tag delimiter, and the end-of-attributes-tag MUST be the
 last tag delimiter. If the operation has a document-content group,
 the document data in that group MUST follow the end-of-attributes-
 tag.

 Each of the other three xxx-attributes-tags defined above is
 OPTIONAL in an operation and each MUST occur at most once in an
 operation, except for job-attributes-tag in a Get-Jobs response which
 may occur zero or more times.

 The order and presence of delimiter tags for each operation request
 and each operation response MUST be that defined in the model
 document. For further details, see section 3.9 "(Attribute) Name" and
 section 9 "Appendix A: Protocol Examples".

 A Printer MUST treat the reserved delimiter tags differently from
 reserved value tags so that the Printer knows that there is an entire
 attribute group that it doesn’t understand as opposed to a single
 value that it doesn’t understand.

3.7.2 Value Tags

 The remaining tables show values for the value-tag, which is the
 first octet of an attribute. The value-tag specifies the type of the
 value of the attribute. The following table specifies the "out-of-
 band" values for the value-tag.

 Tag Value (Hex) Meaning

 0x10 unsupported
 0x11 reserved for future ’default’
 0x12 unknown
 0x13 no-value

 Tag Value (Hex) Meaning

 0x14-0x1F reserved for future "out-of-band" values.

 The "unsupported" value MUST be used in the attribute-sequence of an
 error response for those attributes which the printer does not
 support. The "default" value is reserved for future use of setting
 value back to their default value. The "unknown" value is used for
 the value of a supported attribute when its value is temporarily
 unknown. The "no-value" value is used for a supported attribute to
 which

Herriot, et al. Experimental [Page 11]

RFC 2565 IPP/1.0: Encoding and Transport April 1999

 no value has been assigned, e.g. "job-k-octets-supported" has no
 value if an implementation supports this attribute, but an
 administrator has not configured the printer to have a limit.

 The following table specifies the integer values for the value-tag:

 Tag Value (Hex) Meaning

 0x20 reserved
 0x21 integer
 0x22 boolean
 0x23 enum
 0x24-0x2F reserved for future integer types

 NOTE: 0x20 is reserved for "generic integer" if it should ever be
 needed.

 The following table specifies the octetString values for the value-
 tag:

 Tag Value (Hex) Meaning

 0x30 octetString with an unspecified format
 0x31 dateTime
 0x32 resolution
 0x33 rangeOfInteger
 0x34 reserved for collection (in the future)
 0x35 textWithLanguage
 0x36 nameWithLanguage
 0x37-0x3F reserved for future octetString types

 The following table specifies the character-string values for the
 value-tag:

 Tag Value (Hex) Meaning

 0x40 reserved
 0x41 textWithoutLanguage
 0x42 nameWithoutLanguage
 0x43 reserved
 0x44 keyword
 0x45 uri
 0x46 uriScheme
 0x47 charset
 0x48 naturalLanguage

Herriot, et al. Experimental [Page 12]

RFC 2565 IPP/1.0: Encoding and Transport April 1999

 Tag Value (Hex) Meaning

 0x49 mimeMediaType
 0x4A-0x5F reserved for future character string types

 NOTE: 0x40 is reserved for "generic character-string" if it should
 ever be needed.

 NOTE: an attribute value always has a type, which is explicitly
 specified by its tag; one such tag value is "nameWithoutLanguage".
 An attribute’s name has an implicit type, which is keyword.

 The values 0x60-0xFF are reserved for future types. There are no
 values allocated for private extensions. A new type MUST be
 registered via the type 2 registration process [RFC2566].

 The tag 0x7F is reserved for extending types beyond the 255 values
 available with a single byte. A tag value of 0x7F MUST signify that
 the first 4 bytes of the value field are interpreted as the tag
 value. Note, this future extension doesn’t affect parsers that are
 unaware of this special tag. The tag is like any other unknown tag,
 and the value length specifies the length of a value which contains a
 value that the parser treats atomically. All these 4 byte tag values
 are currently unallocated except that the values 0x40000000-
 0x7FFFFFFF are reserved for experimental use.

3.8 Name-Length

 The name-length field MUST consist of a SIGNED-SHORT. This field MUST
 specify the number of octets in the name field which follows the
 name-length field, excluding the two bytes of the name-length field.

 If a name-length field has a value of zero, the following name field
 MUST be empty, and the following value MUST be treated as an
 additional value for the preceding attribute. Within an attribute-
 sequence, if two attributes have the same name, the first occurrence
 MUST be ignored. The zero-length name is the only mechanism for
 multi-valued attributes.

3.9 (Attribute) Name

 Some operation elements are called parameters in the model document
 [RFC2566]. They MUST be encoded in a special position and they MUST
 NOT appear as an operation attributes. These parameters are:

 - "version-number": The parameter named "version-number" in the
 IPP model document MUST become the "version-number" field in the
 operation layer request or response.

Herriot, et al. Experimental [Page 13]

RFC 2565 IPP/1.0: Encoding and Transport April 1999

 - "operation-id": The parameter named "operation-id" in the IPP
 model document MUST become the "operation-id" field in the
 operation layer request.
 - "status-code": The parameter named "status-code" in the IPP
 model document MUST become the "status-code" field in the
 operation layer response.
 - "request-id": The parameter named "request-id" in the IPP model
 document MUST become the "request-id" field in the operation
 layer request or response.

 All Printer and Job objects are identified by a Uniform Resource
 Identifier (URI) [RFC2396] so that they can be persistently and
 unambiguously referenced. The notion of a URI is a useful concept,
 however, until the notion of URI is more stable (i.e., defined more
 completely and deployed more widely), it is expected that the URIs
 used for IPP objects will actually be URLs [RFC1738] [RFC1808].
 Since every URL is a specialized form of a URI, even though the more
 generic term URI is used throughout the rest of this document, its
 usage is intended to cover the more specific notion of URL as well.

 Some operation elements are encoded twice, once as the request-URI on
 the HTTP Request-Line and a second time as a REQUIRED operation
 attribute in the application/ipp entity. These attributes are the
 target URI for the operation:

 - "printer-uri": When the target is a printer and the transport is
 HTTP or HTTPS (for SSL3 [ssl]), the target printer-uri defined
 in each operation in the IPP model document MUST be an operation
 attribute called "printer-uri" and it MUST also be specified
 outside of the operation layer as the request-URI on the
 Request-Line at the HTTP level.
 - "job-uri": When the target is a job and the transport is HTTP or
 HTTPS (for SSL3), the target job-uri of each operation in the
 IPP model document MUST be an operation attribute called "job-
 uri" and it MUST also be specified outside of the operation
 layer as the request-URI on the Request-Line at the HTTP level.

 Note: The target URI is included twice in an operation referencing
 the same IPP object, but the two URIs NEED NOT be literally
 identical. One can be a relative URI and the other can be an absolute
 URI. HTTP/1.1 allows clients to generate and send a relative URI
 rather than an absolute URI. A relative URI identifies a resource
 with the scope of the HTTP server, but does not include scheme, host
 or port. The following statements characterize how URLs should be
 used in the mapping of IPP onto HTTP/1.1:

Herriot, et al. Experimental [Page 14]

RFC 2565 IPP/1.0: Encoding and Transport April 1999

 1. Although potentially redundant, a client MUST supply the target
 of the operation both as an operation attribute and as a URI at
 the HTTP layer. The rationale for this decision is to maintain
 a consistent set of rules for mapping application/ipp to
 possibly many communication layers, even where URLs are not
 used as the addressing mechanism in the transport layer.
 2. Even though these two URLs might not be literally identical
 (one being relative and the other being absolute), they MUST
 both reference the same IPP object.
 3. The URI in the HTTP layer is either relative or absolute and is
 used by the HTTP server to route the HTTP request to the
 correct resource relative to that HTTP server. The HTTP server
 need not be aware of the URI within the operation request.
 4. Once the HTTP server resource begins to process the HTTP
 request, it might get the reference to the appropriate IPP
 Printer object from either the HTTP URI (using to the context
 of the HTTP server for relative URLs) or from the URI within
 the operation request; the choice is up to the implementation.
 5. HTTP URIs can be relative or absolute, but the target URI in
 the operation MUST be an absolute URI.

 The model document arranges the remaining attributes into groups for
 each operation request and response. Each such group MUST be
 represented in the protocol by an xxx-attribute-sequence preceded by
 the appropriate xxx-attributes-tag (See the table below and section 9
 "Appendix A: Protocol Examples"). In addition, the order of these
 xxx-attributes-tags and xxx-attribute-sequences in the protocol MUST
 be the same as in the model document, but the order of attributes
 within each xxx-attribute-sequence MUST be unspecified. The table
 below maps the model document group name to xxx-attributes-sequence:

 Model Document Group xxx-attributes-sequence

 Operation Attributes operations-attributes-sequence
 Job Template Attributes job-attributes-sequence
 Job Object Attributes job-attributes-sequence
 Unsupported Attributes unsupported-attributes-sequence
 Requested Attributes job-attributes-sequence
 Get-Job-Attributes)
 Requested Attributes printer-attributes-sequence
 Get-Printer-Attributes)
 Document Content in a special position as described
 above

 If an operation contains attributes from more than one job object
 (e.g. Get-Jobs response), the attributes from each job object MUST
 be in a separate job-attribute-sequence, such that the attributes

Herriot, et al. Experimental [Page 15]

RFC 2565 IPP/1.0: Encoding and Transport April 1999

 from the ith job object are in the ith job-attribute-sequence. See
 Section 9 "Appendix A: Protocol Examples" for table showing the
 application of the rules above.

3.10 Value Length

 Each attribute value MUST be preceded by a SIGNED-SHORT, which MUST
 specify the number of octets in the value which follows this length,
 exclusive of the two bytes specifying the length.

 For any of the types represented by binary signed integers, the
 sender MUST encode the value in exactly four octets.

 For any of the types represented by character-strings, the sender
 MUST encode the value with all the characters of the string and
 without any padding characters.

 If a value-tag contains an "out-of-band" value, such as
 "unsupported", the value-length MUST be 0 and the value empty. The
 value has no meaning when the value-tag has an "out-of-band" value.
 If a client receives a response with a nonzero value-length in this
 case, it MUST ignore the value field. If a printer receives a request
 with a nonzero value-length in this case, it MUST reject the request.

3.11 (Attribute) Value

 The syntax types and most of the details of their representation are
 defined in the IPP model document. The table below augments the
 information in the model document, and defines the syntax types from
 the model document in terms of the 5 basic types defined in section 3
 "Encoding of the Operation Layer". The 5 types are US-ASCII-STRING,
 LOCALIZED-STRING, SIGNED-INTEGER, SIGNED-SHORT, SIGNED-BYTE, and
 OCTET-STRING.

Syntax of Attribute Encoding
Value

textWithoutLanguage, LOCALIZED-STRING.
nameWithoutLanguage

textWithLanguage OCTET_STRING consisting of 4 fields:
 a) a SIGNED-SHORT which is the number of octets
 in the following field
 b) a value of type natural-language,
 c) a SIGNED-SHORT which is the number of octets
 in the following field,
 d) a value of type textWithoutLanguage.

Herriot, et al. Experimental [Page 16]

RFC 2565 IPP/1.0: Encoding and Transport April 1999

 The length of a textWithLanguage value MUST be 4
 + the value of field a + the value of field c.

nameWithLanguage OCTET_STRING consisting of 4 fields:
 a) a SIGNED-SHORT which is the number of octets
 in the following field
 b) a value of type natural-language,
 c) a SIGNED-SHORT which is the number of octets
 in the following field
 d) a value of type nameWithoutLanguage.

 The length of a nameWithLanguage value MUST be 4
 + the value of field a + the value of field c.

charset, US-ASCII-STRING.
naturalLanguage,
mimeMediaType,
keyword, uri, and
uriScheme

boolean SIGNED-BYTE where 0x00 is ’false’ and 0x01 is
 ’true’.

Syntax of Attribute Encoding
Value

integer and enum a SIGNED-INTEGER.

dateTime OCTET-STRING consisting of eleven octets whose
 contents are defined by "DateAndTime" in RFC
 2579 [RFC2579].

resolution OCTET_STRING consisting of nine octets of 2
 SIGNED-INTEGERs followed by a SIGNED-BYTE. The
 first SIGNED-INTEGER contains the value of cross
 feed direction resolution. The second SIGNED-
 INTEGER contains the value of feed direction
 resolution. The SIGNED-BYTE contains the units
 value.

rangeOfInteger Eight octets consisting of 2 SIGNED-INTEGERs.
 The first SIGNED-INTEGER contains the lower
 bound and the second SIGNED-INTEGER contains the
 upper bound.

Herriot, et al. Experimental [Page 17]

RFC 2565 IPP/1.0: Encoding and Transport April 1999

1setOf X Encoding according to the rules for an attribute
 with more than 1 value. Each value X is encoded
 according to the rules for encoding its type.

octetString OCTET-STRING

 The type of the value in the model document determines the encoding
 in the value and the value of the value-tag.

3.12 Data

 The data part MUST include any data required by the operation

4. Encoding of Transport Layer

 HTTP/1.1 [RFC2068] is the transport layer for this protocol.

 The operation layer has been designed with the assumption that the
 transport layer contains the following information:

 - the URI of the target job or printer operation
 - the total length of the data in the operation layer, either as a
 single length or as a sequence of chunks each with a length.

 It is REQUIRED that a printer implementation support HTTP over the
 IANA assigned Well Known Port 631 (the IPP default port), though a
 printer implementation may support HTTP over some other port as well.
 In addition, a printer may have to support another port for privacy
 (See Section 5 "Security Considerations").

 Note: even though port 631 is the IPP default, port 80 remains the
 default for an HTTP URI. Thus a URI for a printer using port 631
 MUST contain an explicit port, e.g. "http://forest:631/pinetree". An
 HTTP URI for IPP with no explicit port implicitly reference port 80,
 which is consistent with the rules for HTTP/1.1. Each HTTP operation
 MUST use the POST method where the request-URI is the object target
 of the operation, and where the "Content-Type" of the message-body in
 each request and response MUST be "application/ipp". The message-body
 MUST contain the operation layer and MUST have the syntax described
 in section 3.2 "Syntax of Encoding". A client implementation MUST
 adhere to the rules for a client described for HTTP1.1 [RFC2068]. A
 printer (server) implementation MUST adhere the rules for an origin
 server described for HTTP1.1 [RFC2068].

 An IPP server sends a response for each request that it receives. If
 an IPP server detects an error, it MAY send a response before it has
 read the entire request. If the HTTP layer of the IPP server
 completes processing the HTTP headers successfully, it MAY send an

Herriot, et al. Experimental [Page 18]

RFC 2565 IPP/1.0: Encoding and Transport April 1999

 intermediate response, such as "100 Continue", with no IPP data
 before sending the IPP response. A client MUST expect such a variety
 of responses from an IPP server. For further information on HTTP/1.1,
 consult the HTTP documents [RFC2068].

5. Security Considerations

 The IPP Model document defines an IPP implementation with "privacy"
 as one that implements Secure Socket Layer Version 3 (SSL3). Note:
 SSL3 is not an IETF standards track specification. SSL3 meets the
 requirements for IPP security with regards to features such as mutual
 authentication and privacy (via encryption). The IPP Model document
 also outlines IPP-specific security considerations and should be the
 primary reference for security implications with regards to the IPP
 protocol itself.

 The IPP Model document defines an IPP implementation with
 "authentication" as one that implements the standard way for
 transporting IPP messages within HTTP 1.1. These include the security
 considerations outlined in the HTTP 1.1 standard document [RFC2068]
 and Digest Access Authentication extension [RFC2069].

 The current HTTP infrastructure supports HTTP over TCP port 80. IPP
 server implementations MUST offer IPP services using HTTP over the
 IANA assigned Well Known Port 631 (the IPP default port). IPP server
 implementations may support other ports, in addition to this port.

 See further discussion of IPP security concepts in the model document
 [RFC2566].

5.1 Using IPP with SSL3

 An assumption is that the URI for a secure IPP Printer object has
 been found by means outside the IPP printing protocol, via a
 directory service, web site or other means.

 IPP provides a transparent connection to SSL by calling the
 corresponding URL (a https URI connects by default to port 443).
 However, the following functions can be provided to ease the
 integration of IPP with SSL during implementation:

 connect (URI), returns a status

 "connect" makes an https call and returns the immediate status
 of the connection as returned by SSL to the user. The status
 values are explained in section 5.4.2 of the SSL document
 [ssl].

Herriot, et al. Experimental [Page 19]

RFC 2565 IPP/1.0: Encoding and Transport April 1999

 A session-id may also be retained to later resume a session.
 The SSL handshake protocol may also require the cipher
 specifications supported by the client, key length of the
 ciphers, compression methods, certificates, etc. These should
 be sent to the server and hence should be available to the IPP
 client (although as part of administration features).

 disconnect (session)

 to disconnect a particular session.

 The session-id available from the "connect" could be used.

 resume (session)

 to reconnect using a previous session-id.

 The availability of this information as administration features are
 left for implementers, and need not be specified at this time.

6. References

 [RFC2278] Freed, N. and J. Postel, "IANA Charset Registration
 Procedures", BCP 19, RFC 2278, January 1998.

 [dpa] ISO/IEC 10175 Document Printing Application (DPA), June
 1996.

 [iana] IANA Registry of Coded Character Sets:
 ftp://ftp.isi.edu/in-notes/iana/assignments/character-sets.

 [ipp-iig] Hastings, Tom, et al., "Internet Printing Protocol/1.0:
 Implementer’s Guide", Work in Progress.

 [RFC2569] Herriot, R., Hastings, T., Jacobs, N. and J. Martin,
 "Mapping between LPD and IPP Protocols", RFC 2569, April
 1999.

 [RFC2566] deBry, R., Hastings, T., Herriot, R., Isaacson, S. and P.
 Powell, "Internet Printing Protocol/1.0: Model and
 Semantics", RFC 2566, April 1999.

 [RFC2565] Herriot, R., Butler, S., Moore, P., Tuner, R., "Internet
 Printing Protocol/1.0: Encoding and Transport", RFC 2565,
 April 1999.

Herriot, et al. Experimental [Page 20]

RFC 2565 IPP/1.0: Encoding and Transport April 1999

 [RFC2568] Zilles, S., "Rationale for the Structure and Model and
 Protocol for the Internet Printing Protocol", RFC 2568,
 April 1999.

 [RFC2567] Wright, D., "Design Goals for an Internet Printing
 Protocol", RFC 2567, April 1999.

 [RFC822] Crocker, D., "Standard for the Format of ARPA Internet Text
 Messages", STD 11, RFC 822, August 1982.

 [RFC1123] Braden, R., "Requirements for Internet Hosts - Application
 and Support", STD 3, RFC 1123, October 1989.

 [RFC1179] McLaughlin, L. III, (editor), "Line Printer Daemon
 Protocol" RFC 1179, August 1990.

 [RFC2223] Postel, J. and J. Reynolds, "Instructions to RFC Authors",
 RFC 2223, October 1997.

 [RFC1738] Berners-Lee, T., Masinter, L. and M. McCahill, "Uniform
 Resource Locators (URL)", RFC 1738, December 1994.

 [RFC1759] Smith, R., Wright, F., Hastings, T., Zilles, S. and J.
 Gyllenskog, "Printer MIB", RFC 1759, March 1995.

 [RFC1766] Alvestrand, H., " Tags for the Identification of
 Languages", RFC 1766, March 1995.

 [RFC1808] Fielding, R., "Relative Uniform Resource Locators", RFC
 1808, June 1995.

 [RFC2579] McCloghrie, K., Perkins, D. and J. Schoenwaelder, "Textual
 Conventions for SMIv2", STD 58, RFC 2579, April 1999.

 [RFC2046] Freed, N. and N. Borenstein, Multipurpose Internet Mail
 Extensions (MIME) Part Two: Media Types", RFC 2046,
 November 1996.

 [RFC2048] Freed, N., Klensin J. and J. Postel. Multipurpose Internet
 Mail Extension (MIME) Part Four: Registration Procedures",
 BCP 13, RFC 2048, November 1996.

 [RFC2068] Fielding, R., Gettys, J., Mogul, J., Frystyk, H. and T.
 Berners-Lee, "Hypertext Transfer Protocol -- HTTP/1.1", RFC
 2068, January 1997.

Herriot, et al. Experimental [Page 21]

RFC 2565 IPP/1.0: Encoding and Transport April 1999

 [RFC2069] Franks, J., Hallam-Baker, P., Hostetler, J., Leach, P.,
 Luotonen, A., Sink, E. and L. Stewart, "An Extension to
 HTTP: Digest Access Authentication", RFC 2069, January
 1997.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2184] Freed, N. and K. Moore, "MIME Parameter Value and Encoded
 Word Extensions: Character Sets, Languages, and
 Continuations", RFC 2184, August 1997.

 [RFC2234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", RFC 2234. November 1997.

 [RFC2396] Berners-Lee, T., Fielding, R. and L. Masinter, "Uniform
 Resource Identifiers (URI): Generic Syntax", RFC 2396,
 August 1998.

7. Authors’ Addresses

 Robert Herriot (Editor)
 Xerox Corporation
 3400 Hillview Ave., Bldg #1
 Palo Alto, CA 94304

 Phone: 650-813-7696
 Fax: 650-813-6860
 EMail: rherriot@pahv.xerox.com

 Sylvan Butler
 Hewlett-Packard
 11311 Chinden Blvd.
 Boise, ID 83714

 Phone: 208-396-6000
 Fax: 208-396-3457
 EMail: sbutler@boi.hp.com

Herriot, et al. Experimental [Page 22]

RFC 2565 IPP/1.0: Encoding and Transport April 1999

 Paul Moore
 Microsoft
 One Microsoft Way
 Redmond, WA 98053

 Phone: 425-936-0908
 Fax: 425-93MS-FAX
 EMail: paulmo@microsoft.com

 Randy Turner
 Sharp Laboratories
 5750 NW Pacific Rim Blvd
 Camas, WA 98607

 Phone: 360-817-8456
 Fax: 360-817-8436
 EMail: rturner@sharplabs.com

 IPP Mailing List: ipp@pwg.org
 IPP Mailing List Subscription: ipp-request@pwg.org
 IPP Web Page: http://www.pwg.org/ipp/

Herriot, et al. Experimental [Page 23]

RFC 2565 IPP/1.0: Encoding and Transport April 1999

8. Other Participants:

 Chuck Adams - Tektronix Harry Lewis - IBM
 Ron Bergman - Dataproducts Tony Liao - Vivid Image
 Keith Carter - IBM David Manchala - Xerox
 Angelo Caruso - Xerox Carl-Uno Manros - Xerox
 Jeff Copeland - QMS Jay Martin - Underscore
 Roger deBry - IBM Larry Masinter - Xerox
 Lee Farrell - Canon Ira McDonald - High North Inc.
 Sue Gleeson - Digital Bob Pentecost - Hewlett-Packard
 Charles Gordon - Osicom Patrick Powell - Astart
 Technologies
 Brian Grimshaw - Apple Jeff Rackowitz - Intermec
 Jerry Hadsell - IBM Xavier Riley - Xerox
 Richard Hart - Digital Gary Roberts - Ricoh
 Tom Hastings - Xerox Stuart Rowley - Kyocera
 Stephen Holmstead Richard Schneider - Epson
 Zhi-Hong Huang - Zenographics Shigern Ueda - Canon
 Scott Isaacson - Novell Bob Von Andel - Allegro Software
 Rich Lomicka - Digital William Wagner - Digital Products
 David Kellerman - Northlake Jasper Wong - Xionics
 Software
 Robert Kline - TrueSpectra Don Wright - Lexmark
 Dave Kuntz - Hewlett-Packard Rick Yardumian - Xerox
 Takami Kurono - Brother Lloyd Young - Lexmark
 Rich Landau - Digital Peter Zehler - Xerox
 Greg LeClair - Epson Frank Zhao - Panasonic
 Steve Zilles - Adobe

Herriot, et al. Experimental [Page 24]

RFC 2565 IPP/1.0: Encoding and Transport April 1999

9. Appendix A: Protocol Examples

9.1 Print-Job Request

 The following is an example of a Print-Job request with job-name,
 copies, and sides specified. The "ipp-attribute-fidelity" attribute
 is set to ’true’ so that the print request will fail if the "copies"
 or the "sides" attribute are not supported or their values are not
 supported.

 Octets Symbolic Value Protocol field

 0x0100 1.0 version-number
 0x0002 Print-Job operation-id
 0x00000001 1 request-id
 0x01 start operation-attributes operation-attributes-tag
 0x47 charset type value-tag
 0x0012 name-length
 attributes- attributes-charset name
 charset
 0x0008 value-length
 us-ascii US-ASCII value
 0x48 natural-language type value-tag
 0x001B name-length
 attributes- attributes-natural-language name
 natural-
 language
 0x0005 value-length
 en-us en-US value
 0x45 uri type value-tag
 0x000B name-length
 printer-uri printer-uri name
 0x001A value-length
 http://forest: printer pinetree value
 631/pinetree
 0x42 nameWithoutLanguage type value-tag
 0x0008 name-length
 job-name job-name name
 0x0006 value-length
 foobar foobar value
 0x22 boolean type value-tag
 0x16 name-length
 ipp-attribute- ipp-attribute-fidelity name
 fidelity
 0x01 value-length
 0x01 true value
 0x02 start job-attributes job-attributes-tag
 0x21 integer type value-tag

Herriot, et al. Experimental [Page 25]

RFC 2565 IPP/1.0: Encoding and Transport April 1999

 0x0006 name-length
 copies copies name
 0x0004 value-length
 0x00000014 20 value
 0x44 keyword type value-tag
 0x0005 name-length
 sides sides name
 0x0013 value-length
 two-sided- two-sided-long-edge value
 long-edge
 0x03 end-of-attributes end-of-attributes-tag
 %!PS... <PostScript> data

9.2 Print-Job Response (successful)

 Here is an example of a successful Print-Job response to the previous
 Print-Job request. The printer supported the "copies" and "sides"
 attributes and their supplied values. The status code returned is ’
 successful-ok’.

 Octets Symbolic Value Protocol field

 0x0100 1.0 version-number
 0x0000 successful-ok status-code
 0x00000001 1 request-id
 0x01 start operation-attributes operation-attributes-tag
 0x47 charset type value-tag
 0x0012 name-length
 attributes- attributes-charset name
 charset
 0x0008 value-length
 us-ascii US-ASCII value
 0x48 natural-language type value-tag
 0x001B name-length
 attributes- attributes-natural- name
 natural-language language
 0x0005 value-length
 en-us en-US value
 0x41 textWithoutLanguage type value-tag
 0x000E name-length
 status-message status-message name
 0x000D value-length
 successful-ok successful-ok value
 0x02 start job-attributes job-attributes-tag
 0x21 integer value-tag
 0x0006 name-length

Herriot, et al. Experimental [Page 26]

RFC 2565 IPP/1.0: Encoding and Transport April 1999

 Octets Symbolic Value Protocol field

 job-id job-id name
 0x0004 value-length
 147 147 value
 0x45 uri type value-tag
 0x0007 name-length
 job-uri job-uri name
 0x001E value-length
 http://forest:63 job 123 on pinetree value
 1/pinetree/123
 0x42 nameWithoutLanguage type value-tag
 0x0009 name-length
 job-state job-state name
 0x0004 value-length
 0x0003 pending value
 0x03 end-of-attributes end-of-attributes-tag

9.3 Print-Job Response (failure)

 Here is an example of an unsuccessful Print-Job response to the
 previous Print-Job request. It fails because, in this case, the
 printer does not support the "sides" attribute and because the value
 ’20’ for the "copies" attribute is not supported. Therefore, no job
 is created, and neither a "job-id" nor a "job-uri" operation
 attribute is returned. The error code returned is ’client-error-
 attributes-or-values-not-supported’ (0x040B).

 Octets Symbolic Value Protocol field

 0x0100 1.0 version-number
 0x040B client-error-attributes-or- status-code
 values-not-supported
 0x00000001 1 request-id
 0x01 start operation-attributes operation-attribute tag
 0x47 charset type value-tag
 0x0012 name-length
 attributes- attributes-charset name
 charset
 0x0008 value-length
 us-ascii US-ASCII value
 0x48 natural-language type value-tag
 0x001B name-length
 attributes- attributes-natural-language name
 natural-
 language
 0x0005 value-length

Herriot, et al. Experimental [Page 27]

RFC 2565 IPP/1.0: Encoding and Transport April 1999

 Octets Symbolic Value Protocol field

 en-us en-US value
 0x41 textWithoutLanguage type value-tag
 0x000E name-length
 status- status-message name
 message
 0x002F value-length
 client-error- client-error-attributes-or- value
 attributes- values-not-supported
 or-values-
 not-supported
 0x05 start unsupported-attributes unsupported-attributes tag
 0x21 integer type value-tag
 0x0006 name-length
 copies copies name
 0x0004 value-length
 0x00000014 20 value
 0x10 unsupported (type) value-tag
 0x0005 name-length
 sides sides name
 0x0000 value-length
 0x03 end-of-attributes end-of-attributes-tag

9.4 Print-Job Response (success with attributes ignored)

 Here is an example of a successful Print-Job response to a Print-Job
 request like the previous Print-Job request, except that the value of
 ’ipp-attribute-fidelity’ is false. The print request succeeds, even
 though, in this case, the printer supports neither the "sides"
 attribute nor the value ’20’ for the "copies" attribute. Therefore, a
 job is created, and both a "job-id" and a "job-uri" operation
 attribute are returned. The unsupported attributes are also returned
 in an Unsupported Attributes Group. The error code returned is ’
 successful-ok-ignored-or-substituted-attributes’ (0x0001).

 Octets Symbolic Value Protocol field

 0x0100 1.0 version-number
 0x0001 successful-ok-ignored-or- status-code
 substituted-attributes
 0x00000001 1 request-id
 0x01 start operation-attributes operation-attributes-tag
 0x47 charset type value-tag
 0x0012 name-length
 attributes- attributes-charset name
 charset
 0x0008 value-length

Herriot, et al. Experimental [Page 28]

RFC 2565 IPP/1.0: Encoding and Transport April 1999

 Octets Symbolic Value Protocol field

 us-ascii US-ASCII value
 0x48 natural-language type value-tag
 0x001B name-length
 attributes- attributes-natural- name
 natural-language language
 0x0005 value-length
 en-us en-US value
 0x41 textWithoutLanguage type value-tag
 0x000E name-length
 status-message status-message name
 0x002F value-length
 successful-ok- successful-ok-ignored-or- value
 ignored-or- substituted-attributes
 substituted-
 attributes
 0x05 start unsupported- unsupported-attributes
 attributes tag
 0x21 integer type value-tag
 0x0006 name-length
 copies copies name
 0x0004 value-length
 0x00000014 20 value
 0x10 unsupported (type) value-tag
 0x0005 name-length
 sides sides name
 0x0000 value-length
 0x02 start job-attributes job-attributes-tag
 0x21 integer value-tag
 0x0006 name-length
 job-id job-id name
 0x0004 value-length
 147 147 value
 0x45 uri type value-tag
 0x0007 name-length
 job-uri job-uri name
 0x001E value-length
 http://forest:63 job 123 on pinetree value
 1/pinetree/123
 0x42 nameWithoutLanguage type value-tag
 0x0009 name-length
 job-state job-state name
 0x0004 value-length
 0x0003 pending value
 0x03 end-of-attributes end-of-attributes-tag

Herriot, et al. Experimental [Page 29]

RFC 2565 IPP/1.0: Encoding and Transport April 1999

9.5 Print-URI Request

 The following is an example of Print-URI request with copies and
 job-name parameters:

 Octets Symbolic Value Protocol field

 0x0100 1.0 version-number

 Octets Symbolic Value Protocol field
 0x0003 Print-URI operation-id
 0x00000001 1 request-id
 0x01 start operation-attributes operation-attributes-tag
 0x47 charset type value-tag
 0x0012 name-length
 attributes- attributes-charset name
 charset
 0x0008 value-length
 us-ascii US-ASCII value
 0x48 natural-language type value-tag
 0x001B name-length
 attributes- attributes-natural-language name
 natural-
 language
 0x0005 value-length
 en-us en-US value
 0x45 uri type value-tag
 0x000B name-length
 printer-uri printer-uri name
 0x001A value-length
 http://forest printer pinetree value
 :631/pinetree
 0x45 uri type value-tag
 0x000C name-length
 document-uri document-uri name
 0x11 value-length
 ftp://foo.com ftp://foo.com/foo value
 /foo
 0x42 nameWithoutLanguage type value-tag
 0x0008 name-length
 job-name job-name name
 0x0006 value-length
 foobar foobar value
 0x02 start job-attributes job-attributes-tag
 0x21 integer type value-tag
 0x0006 name-length
 copies copies name
 0x0004 value-length

Herriot, et al. Experimental [Page 30]

RFC 2565 IPP/1.0: Encoding and Transport April 1999

 0x00000001 1 value
 0x03 end-of-attributes end-of-attributes-tag

9.6 Create-Job Request

 The following is an example of Create-Job request with no parameters
 and no attributes:

 Octets Symbolic Value Protocol field
 0x0100 1.0 version-number
 0x0005 Create-Job operation-id
 0x00000001 1 request-id
 0x01 start operation-attributes operation-attributes-tag
 0x47 charset type value-tag
 0x0012 name-length

 Octets Symbolic Value Protocol field
 attributes- attributes-charset name
 charset
 0x0008 value-length
 us-ascii US-ASCII value
 0x48 natural-language type value-tag
 0x001B name-length
 attributes- attributes-natural-language name
 natural-
 language
 0x0005 value-length
 en-us en-US value
 0x45 uri type value-tag
 0x000B name-length
 printer-uri printer-uri name
 0x001A value-length
 http://forest: printer pinetree value
 631/pinetree
 0x03 end-of-attributes end-of-attributes-tag

9.7 Get-Jobs Request

 The following is an example of Get-Jobs request with parameters but
 no attributes:

 Octets Symbolic Value Protocol field

 0x0100 1.0 version-number
 0x000A Get-Jobs operation-id
 0x00000123 0x123 request-id
 0x01 start operation-attributes operation-attributes-tag
 0x47 charset type value-tag

Herriot, et al. Experimental [Page 31]

RFC 2565 IPP/1.0: Encoding and Transport April 1999

 Octets Symbolic Value Protocol field

 0x0012 name-length
 attributes- attributes-charset name
 charset
 0x0008 value-length
 us-ascii US-ASCII value
 0x48 natural-language type value-tag
 0x001B name-length
 attributes- attributes-natural-language name
 natural-
 language
 0x0005 value-length
 en-us en-US value
 0x45 uri type value-tag
 0x000B name-length
 printer-uri printer-uri name
 0x001A value-length
 http://forest:6 printer pinetree value
 31/pinetree
 0x21 integer type value-tag
 0x0005 name-length
 limit limit name
 0x0004 value-length
 0x00000032 50 value
 0x44 keyword type value-tag
 0x0014 name-length
 requested- requested-attributes name
 attributes
 0x0006 value-length
 job-id job-id value
 0x44 keyword type value-tag
 0x0000 additional value name-length
 0x0008 value-length
 job-name job-name value
 0x44 keyword type value-tag
 0x0000 additional value name-length
 0x000F value-length
 document-format document-format value
 0x03 end-of-attributes end-of-attributes-tag

9.8 Get-Jobs Response

 The following is an of Get-Jobs response from previous request with 3
 jobs. The Printer returns no information about the second job
 (because of security reasons):

Herriot, et al. Experimental [Page 32]

RFC 2565 IPP/1.0: Encoding and Transport April 1999

 Octets Symbolic Value Protocol field

 0x0100 1.0 version-number
 0x0000 successful-ok status-code
 0x00000123 0x123 request-id (echoed
 back)
 0x01 start operation-attributes operation-attribute-tag
 0x47 charset type value-tag
 0x0012 name-length
 attributes- attributes-charset name
 charset
 0x000A value-length
 ISO-8859-1 ISO-8859-1 value
 0x48 natural-language type value-tag
 0x001B name-length
 attributes- attributes-natural-language name
 natural-
 language
 0x0005 value-length
 en-us en-US value
 0x41 textWithoutLanguage type value-tag
 0x000E name-length
 status-message status-message name
 0x000D value-length
 successful-ok successful-ok value
 0x02 start job-attributes (1st job-attributes-tag
 object)
 0x21 integer type value-tag
 0x0006 name-length
 job-id job-id name
 0x0004 value-length
 147 147 value
 0x36 nameWithLanguage value-tag
 0x0008 name-length
 job-name job-name name
 0x000C value-length
 0x0005 sub-value-length
 fr-ca fr-CA value
 0x0003 sub-value-length
 fou fou name
 0x02 start job-attributes (2nd job-attributes-tag
 object)
 0x02 start job-attributes (3rd job-attributes-tag
 object)
 0x21 integer type value-tag
 0x0006 name-length
 job-id job-id name
 0x0004 value-length

Herriot, et al. Experimental [Page 33]

RFC 2565 IPP/1.0: Encoding and Transport April 1999

 Octets Symbolic Value Protocol field

 148 148 value
 0x36 nameWithLanguage value-tag
 0x0008 name-length
 job-name job-name name
 0x0012 value-length
 0x0005 sub-value-length
 de-CH de-CH value
 0x0009 sub-value-length
 isch guet isch guet name
 0x03 end-of-attributes end-of-attributes-tag

Herriot, et al. Experimental [Page 34]

RFC 2565 IPP/1.0: Encoding and Transport April 1999

10. Appendix C: Registration of MIME Media Type Information for
 "application/ipp"

 This appendix contains the information that IANA requires for
 registering a MIME media type. The information following this
 paragraph will be forwarded to IANA to register application/ipp whose
 contents are defined in Section 3 "Encoding of the Operation Layer"
 in this document:

 MIME type name: application

 MIME subtype name: ipp

 A Content-Type of "application/ipp" indicates an Internet Printing
 Protocol message body (request or response). Currently there is one
 version: IPP/1.0, whose syntax is described in Section 3 "Encoding of
 the Operation Layer" of [RFC2565], and whose semantics are described
 in [RFC2566].

 Required parameters: none

 Optional parameters: none

 Encoding considerations:

 IPP/1.0 protocol requests/responses MAY contain long lines and ALWAYS
 contain binary data (for example attribute value lengths).

 Security considerations:

 IPP/1.0 protocol requests/responses do not introduce any security
 risks not already inherent in the underlying transport protocols.
 Protocol mixed-version interworking rules in [RFC2566] as well as
 protocol encoding rules in [RFC2565] are complete and unambiguous.

 Interoperability considerations:

 IPP/1.0 requests (generated by clients) and responses (generated by
 servers) MUST comply with all conformance requirements imposed by the
 normative specifications [RFC2566] and [RFC2565]. Protocol encoding
 rules specified in [RFC2565] are comprehensive, so that
 interoperability between conforming implementations is guaranteed
 (although support for specific optional features is not ensured).
 Both the "charset" and "natural-language" of all IPP/1.0 attribute
 values which are a LOCALIZED-STRING are explicit within IPP protocol
 requests/responses (without recourse to any external information in
 HTTP, SMTP, or other message transport headers).

Herriot, et al. Experimental [Page 35]

RFC 2565 IPP/1.0: Encoding and Transport April 1999

 Published specification:

 [RFC2566] Isaacson, S., deBry, R., Hastings, T., Herriot, R. and P.
 Powell, "Internet Printing Protocol/1.0: Model and
 Semantics" RFC 2566, April 1999.

 [RFC2565] Herriot, R., Butler, S., Moore, P., Tuner, R., "Internet
 Printing Protocol/1.0: Encoding and Transport", RFC 2565,
 April 1999.

 Applications which use this media type:

 Internet Printing Protocol (IPP) print clients and print servers,
 communicating using HTTP/1.1 (see [RFC2565]), SMTP/ESMTP, FTP, or
 other transport protocol. Messages of type "application/ipp" are
 self-contained and transport-independent, including "charset" and
 "natural-language" context for any LOCALIZED-STRING value.

 Person & email address to contact for further information:

 Scott A. Isaacson
 Novell, Inc.
 122 E 1700 S
 Provo, UT 84606

 Phone: 801-861-7366
 Fax: 801-861-4025
 Email: sisaacson@novell.com

 or

 Robert Herriot (Editor)
 Xerox Corporation
 3400 Hillview Ave., Bldg #1
 Palo Alto, CA 94304

 Phone: 650-813-7696
 Fax: 650-813-6860
 EMail: rherriot@pahv.xerox.com

Herriot, et al. Experimental [Page 36]

RFC 2565 IPP/1.0: Encoding and Transport April 1999

11. Full Copyright Statement

 Copyright (C) The Internet Society (1999). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Herriot, et al. Experimental [Page 37]

